Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An online gain tuning proxy-based sliding mode control using neural network for a gait training robotic orthosis

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In the last decades, wearable powered orthoses have been introduced in the state of the art for lower-limb rehabilitation. Most of these applications are driven by electric motors. Comparing with electric motor actuators, pneumatic artificial muscle (PAM) actuators are compliant because of the elasticity of PAMs. Consequently, for more safety and comfort of lower-limb rehabilitation, a compliant robotic orthosis powered by PAMs is developed. Based on safe control, a new control method, proxy-based sliding mode control (PSMC), was introduced into rehabilitation robotics a few years ago. It combined safety and accuracy of tracking to make it suitable for the safe control of PAM actuators. As the reason of low frequency response of PAM actuators and variable loads caused by different human subjects, the fixed parameters of PSMC makes the tracking performance vary from subject to subject, and lacks robustness. This paper presents a modification of PSMC by using neural network to tune PSMC gains online, and implements both PSMC and modified PSMC control schemes in the robotic orthosis. Experimental results demonstrate that the improved PSMC method performs better on tracking with little degradation on safety for different loads and human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Husemann, B., Muller, F., Krewer, C., Heller, S., Koenig, E.: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 38, 349–354 (2007)

    Article  Google Scholar 

  2. Mayr, A., Kofler, M., Quirbach, E., Matzak, H., Frohlich, K., Saltuari, L.: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neural Repair 21, 307–314 (2007)

    Article  Google Scholar 

  3. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 17, 2–8 (2009)

    Article  Google Scholar 

  4. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37, 693–700 (2000)

    Google Scholar 

  5. Emken, J.L., Wynne, J.H., Harkema, S.J., Reinkensmeyer, D.J.: A robotic device for manipulating human stepping. IEEE Trans. Robot. 22, 185–189 (2006)

    Article  Google Scholar 

  6. Veneman, J.F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., Van Asseldonk, E.H.F., van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 379–386 (2007)

    Article  Google Scholar 

  7. Daisuke Aoyagi, W.E.I., Harkema, S.J., Reinkensmeyer, D.J., Bobrow, J.E.: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 387–400 (2007)

    Article  Google Scholar 

  8. Hussain, Shahid, Xie, Sheng Q., Jamwal, Prashant K.: Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans. Cybern. 43, 1025–1034 (2013)

    Article  Google Scholar 

  9. Beyl, P., Van Damme, M., Van Ham, R., Versluys, R., Vanderborght, B., Lefeber, D.: An exoskeleton for gait rehabilitation: prototype design and control principle. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 2037–2042. Pasadena, CA (2008)

  10. Xiong, Caihua, Jiang, Xianzhi: Control methods for exoskeleton rehabilitation robot driven with pneumatic muscles. Ind. Robot Int. J. 36, 210–220 (2009)

    Article  Google Scholar 

  11. Deneve, A., Moughamir, S., Afilal, L., Zaytoon, J.: Control system design of a 3-DOF upper limbs rehabilitation robot. Comput. Methods Progr. Biomed. 89, 202–214 (2008)

    Article  Google Scholar 

  12. Waycaster, G., Wu, S.-K., Shen, X.: Design and control of a pneumatic artificial muscle actuated above-knee prosthesis. ASME J. Med. Dev. 5(3), 031003 (2011)

    Article  Google Scholar 

  13. Chang, M.K.: An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Eng. Pract. 18, 13–22 (2010)

    Article  Google Scholar 

  14. Thanh, T.D.C., Ahn, K.K.: Intelligent phase plane switching control of pneumatic artificial muscle manipulators with magneto-rheological brake. Mechatronics 16, 85–95 (2006)

    Article  Google Scholar 

  15. Tonietti, G., Bicchi, A.: Adaptive simultaneous position and stiffness control for a soft robot arm. In: Proceedings of the IEEE International Symposium on Intelligent Robots and Systems, EPFL, Switzerland, pp. 1992–1997 (2002)

  16. Eskiizmirliler, S., Tondu, B., Darlot, C.: Motor control of a limb segment actuated by artificial muscles. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 865–868. Orlando, FL (2001)

  17. Lilly, J.H., Yang, L.: Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration. IEEE Trans. Control Syst. Technol. 13, 550–558 (2005)

    Article  Google Scholar 

  18. Carbonell, P., Jiang ,Z.P., Repperger, D.W.: Nonlinear control of a pneumatic muscle actuator: backstepping vs. sliding-mode. In: Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 167–172. Mexico City, Mexico (2001)

  19. Kikuuwe, R., Fujimoto, H.: Proxy-based sliding mode control for accurate and safe position control. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 25–30. Orlando, FL (2006)

  20. Van Damme, M., Vanderborght, V., Verrelst, B., Van Ham, R., Daerden, F., Lefeber, D.: Proxy-based sliding mode control of a planar pneumatic manipulator. Int. J. Robot. Res. 28, 266–284 (2009)

    Article  Google Scholar 

  21. Beyl, P., Knaepen, K., Duerinck, S., Van Damme, M., Vanderborght, B., Meeusen, R., Lefeber, D.: Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait. Adv. Robot. 25, 513–535 (2011)

    Article  Google Scholar 

  22. Prieto, P.J., Rubio, E., Hernández, L., Urquijo, O.: Proxy-based sliding mode control on platform of 3 degree of freedom (3-DOF). Adv. Robot. 27, 773–784 (2013)

    Article  Google Scholar 

  23. Gu, G., Zhu, L., Su, C., Ding, H., Fatikow, S.: Proxy-based sliding-mode tracking control of piezoelectric-actuated nanopositioning stages. IEEE/ASME Trans. Mechatron. 20, 1956–1965 (2015)

    Article  Google Scholar 

  24. Xuan, J., Luo, X., Zhang, G., Lu, J., Xu, Z.: Uncertainty analysis for the keyword system of web events. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 829–842 (2016)

    Article  Google Scholar 

  25. Wei, X., Luo, X., Li, Q., Zhang, J., Xu, Z.: Online comment-based hotel quality automatic assessment using improved fuzzy comprehensive evaluation and fuzzy cognitive map. IEEE Trans. Fuzzy Syst. 23(1), 72–84 (2015)

    Article  Google Scholar 

  26. Luo, X., Xu, Z., Yu, J., Chen, X.: Building association link network for semantic link on web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)

    Article  Google Scholar 

  27. Chou, C.-P., Hannaford, B.: Measurement of modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Automat. 12(1), 90–102 (1996)

    Article  Google Scholar 

  28. Reynolds, D.B., Repperger, D.W., Phillips, C.A., Bandry, G.: Modeling the dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng. 31, 310–317 (2003)

    Article  Google Scholar 

  29. Cui, S.G., Pan, H.L., and Li, J.G.: Application of self-tuning of PID control based on BP neural networks in the mobile robot target tracking. In: International Conference on Instrumentation, pp. 1574–1577 (2013)

  30. Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. University of Waterloo Press, Waterloo (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhan Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Huang, X., Tu, X. et al. An online gain tuning proxy-based sliding mode control using neural network for a gait training robotic orthosis. Cluster Comput 19, 1987–2000 (2016). https://doi.org/10.1007/s10586-016-0629-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0629-y

Keywords