Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new recommendation algorithm combined with spectral clustering and transfer learning

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Collaborative filtering (CF) recommendation algorithm has been successfully applied into recommender systems for years which can solve the problem of information overload. However, CF suffers from data sparsity and knowledge cannot transfer between multiple rating matrixes. In this paper, we propose a collaborative filtering recommendation algorithm combined with spectral clustering and transfer learning (RASCTL). RASCTL firstly uses spectral clustering to cluster the dimensions of users and items in the original rating matrix. In addition, RASCTL decomposes the rating matrix after clustering and gets the sharing group rating matrix. Finally, RASCTL makes rating forecasting and recommendations combined with the sharing group rating matrix and transfer learning. By the simulation experiments on Epinions and MovieLents data sets, the results show that RASCTL is able to obtain comparable or even better recommendation accuracy and generalization ability compared with other seven CF recommendation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ribeiro, M.T., Ziviani, N., Edleno, S.: Multi-objective pareto-efficient approaches for recommender systems. ACM Trans. Intell. Syst. Technol. 5(4), 38–52 (2015). doi:10.1145/2629350

    Google Scholar 

  2. Guha, S., Mishra, N.: Clustering data streams. In: Minos, G., Johannes, G. (eds.) Data Stream Management, pp. 359–366. Springer, Berlin (2016)

    Google Scholar 

  3. Lin, F., Zhou, X., Zeng, W.H.: Online learning for collaborative filtering. Int. J. Comput. Commun. Control 11(2), 248–258 (2016). doi:10.15837/ijccc.2016.2.2144

    Article  Google Scholar 

  4. Pan, W., Ming, Z.: Interaction-rich transfer learning for collaborative filtering with heterogeneous user feedback. IEEE Intell. Syst. 29(6), 48–54 (2014). doi:10.1109/MIS.2014.2

    Article  Google Scholar 

  5. Komkhao, M., Lu, J., Li, Z.: Incremental collaborative filtering based on mahalanobis distance and fuzzy membership for recommender systems. Int. J. Gen Syst 42(1), 41–46 (2013). doi:10.1080/03081079.2012.710437

    Article  MATH  Google Scholar 

  6. Lin, S.Y., Lai, C.H., Wu, C.H.: A trustworthy qos-based collaborative filtering approach for web service discovery. J. Syst. Softw. 93, 217–228 (2014). doi:10.1016/j.jss.2014.01.036

    Article  Google Scholar 

  7. Cron, A., Zhang, L., Agarwal, D.: Collaborative filtering for massive multinomial data. J. Appl. Stat. 41(4), 701–715 (2014). doi:10.1080/02664763.2013.847072

    Article  MathSciNet  Google Scholar 

  8. Xiao, M.B., Zheng, X.W.: Collaborative filtering algorithm with stepwise prediction. Appl. Res. Comput. 32(11), 3256–3272 (2015). doi:10.3969/j.issn.1001-3695.2015.11.012

    Google Scholar 

  9. Wu, H., Wang, Y.J., Wang, Z.: Two-phase collaborative filtering algorithm based on co-clustering. J. Softw. 21(5), 1042–1054 (2010). doi:10.3724/SP.J.1001.2010.03758

    Article  Google Scholar 

  10. Zhao, H.C., Zhai, L.L., Zhang, S.C.: A collaborative filtering recommendation method based on clustering of gray association degree and factors of tag overlap. Comput. Eng. Sci. 38(1), 171–175 (2016). doi:10.3969/j.issn.1007-130X.2016.01.028

    Google Scholar 

  11. Zhao, H.X., Wang, X.H., Yang, J.P.: Mixed collaborative recommendation algorithm based on factor analysis of user and item. J. Comput. Appl. 31(5), 1382–1386 (2011). doi:10.3724/SP.J.1087.2011.01382

    MATH  Google Scholar 

  12. Huang, Z., Zeng, D., Chen, H.C.: A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intell. Syst. 22(5), 68–78 (2007). doi:10.1109/MIS.2007.80

    Article  Google Scholar 

  13. Yan, H., Qimin, P., Hu, X.: Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering. IEEE Trans. Serv. Comput. 8(5), 782–794 (2015). doi:10.1109/TSC.2014.2381611

    Article  Google Scholar 

  14. Luo, X., Zhou, M.C., Leung, H.: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016). doi:10.1109/TASE.2014.2348555

    Article  Google Scholar 

  15. Saya, Y., Yasunari, Y., Chikoto, K.: Music recommendation hybrid system for improving recognition ability using collaborative filtering and impression words. Artif. Life Robot. 18(1), 109–116 (2013). doi:10.1007/s10015-013-0107-z

    Google Scholar 

  16. Li, W.Z.: Fast program for clustering and comparing large sets of protein or nucleotide sequences. In: Karen E.N. (ed.)Encyclopedia of Metagenomics, pp. 173–177. Springer Science+Business Media, New Work (2015). doi:10.1007/978-1-4899-7478-5_221

  17. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Computer Vision and Pattern Recognition, Boston, pp. 815–823 (2015). doi:10.1109/CVPR.2015.7298682

  18. Bi, C., Wang, H., Bao, R.: SAR image change detection using regularized dictionary learning and fuzzy clustering. In: International Conference on Cloud Computing and Intelligence Systems, Beijing, pp. 327–330 (2015). doi:10.1109/CCIS.2014.7175753

  19. Schulam, P., Wigley, F., Saria, S.: Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, pp. 2956–2964 (2015)

  20. Yang, Y., Ma, Z.H., Yi, Y.: Multitask spectral clustering by exploring intertask correlation. IEEE Trans. Cybern. 45(5), 1083–1094 (2015). doi:10.1109/TCYB.2014.2344015

    Article  Google Scholar 

  21. Marina, A.O., Zanoni, D., Siome, G.: Manifold learning and spectral clustering for image phylogeny forests. IEEE Trans. Inf. Forensics Secur. 11(1), 5–18 (2016). doi:10.1109/TIFS.2015.2442527

    Article  Google Scholar 

  22. Sayyed, B.F., Mohammad, R.M., Ali, A.A.: Clustering multispectral images using spatial information. IEEE Geosci. Remote Sens. Lett. 12(7), 1521–1525 (2015). doi:10.1109/LGRS.2015.241155

    Article  Google Scholar 

  23. Budianto, T., Henry, J., Hock, S.S.: Spectral caustic rendering of a homogeneous caustic object based on wavelength clustering and eye sensitivity. Vis. Comput. 31(3), 365–370 (2015). doi:10.1007/s00371-014-1037-z

    Article  Google Scholar 

  24. Budianto, T., Henry, J., Hock, S.S.: Spectral caustic rendering of a homogeneous caustic object based on wavelength clustering and eye sensitivity. Vis. Comput. 31(3), 365–370 (2015). doi:10.1007/s00371-014-1037-z

    Article  Google Scholar 

  25. Ullah, M.Z., Aono, M., Seddiqui, M.: Estimating a ranked list of human genetic diseases by associating phenotype-gene with gene-disease bipartite graphs. ACM Trans. Intell. Syst. Technol. 6(4), 1–22 (2015). doi:10.1145/2700487

    Article  Google Scholar 

  26. Agni, D., Herve, J., Laurent, A.: Image retrieval with reciprocal and shared nearest neighbors. In: 2014 International Conference on Computer Vision Theory and Applications, Lisbon, pp. 321–328 (2014)

  27. Luiz, P., Tomasz, R., Joshua, A.: Recommending people to people: the nature of reciprocal recommenders with a case study in online dating. User Model. User Adapt. Interact. 23(5), 77–488 (2013)

    Google Scholar 

  28. Liu, J., Wu, C., Xiong, Y.: List-wise probabilistic matrix factorization for recommendation. Inf. Sci. 278, 434–447 (2014). doi:10.1016/j.ins.2014.03.063

    Article  Google Scholar 

  29. Zhou, X.K., Wu, S., Chen, G.: kNN processing with co-space distance in SoLoMo systems. Expert Syst. Appl. 41(16), 6967–6982 (2014). doi:10.1016/j.eswa.2014.06.008

    Article  Google Scholar 

  30. Saleh, A.I., Desoulw, A., Ali, S.H.: Promoting the performance of vertical recommendation systems by applying new classification techniques. Knowl. Based Syst. 75, 192–223 (2015). doi:10.1016/j.knosys.2014.12.002

    Article  Google Scholar 

  31. Huang, J.J., Yuan, X., Zhong, N.: Modeling tag-aware recommendations based on user preferences. Int. J. Inform. Technol. Decis. Making 14(5), 947–970 (2015). doi:10.1142/S0219622015500194

    Article  Google Scholar 

  32. Liu, W., Wu, C., Feng, B.: Conditional preference in recommender systems. Expert Syst. Appl. 42(2), 774–788 (2015). doi:10.1016/j.eswa.2014.08.044

  33. Liu, J., Xiong, Y., Wu, C.: Learning conditional preference networks from inconsistent examples. IEEE Trans. Knowl. Data Eng. 26(2), 376–390 (2014). doi:10.1109/TKDE.2012.231

    Article  Google Scholar 

  34. Le, H.S., Tran, M.T.: General factorization framework for context-aware recommendations. Data Min. Knowl. Disc. 30(2), 342–371 (2016). doi:10.1007/s10618-015-0417-

    Article  MathSciNet  Google Scholar 

  35. Liu, J.T., Sui, C.H., Deng, D.W.: Representing conditional preference by boosted regression trees for recommendation. Inf. Sci. 327, 1–20 (2016). doi:10.1016/j.ins.2015.08.001

    Article  Google Scholar 

  36. Gantner, Z., Rendle, S., Freudenthaler, C.: MyMediaLite: a free recommender system library. In: Proceedings of the 15th ACM Conference on Recommender Systems, New York, pp. 305–308 (2011). doi:10.1145/2043932.2043989

Download references

Acknowledgements

This research was financially supported by University Science Research Project of Jiangsu Province (15KJB520004), Science and Technology Projects of Huaian (HAC201601), Science and Technology Project of Jiangsu Province (BE2015127) and Jiangsu Government Scholarship for Overseas Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving animal participants

This article does not contain any studies with animals performed by any of the authors.

Informed consent

It was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Z. A new recommendation algorithm combined with spectral clustering and transfer learning. Cluster Comput 22 (Suppl 1), 1151–1167 (2019). https://doi.org/10.1007/s10586-017-1161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1161-4

Keywords