Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gesture recognition based on modified adaptive orthogonal matching pursuit algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Aiming at the disadvantages of greedy algorithms in sparse solution, a modified adaptive orthogonal matching pursuit algorithm (MAOMP) is proposed in this paper. It is obviously improved to introduce sparsity and variable step size for the MAOMP. The algorithm estimates the initial value of sparsity by matching test, and will decrease the number of subsequent iterations. Finally, the step size is adjusted to select atoms and approximate the true sparsity at different stages. The simulation results show that the algorithm which has proposed improves the recognition accuracy and efficiency comparing with other greedy algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miao, W., Li, G.F., Jiang, G.Z., et al.: Optimal grasp planning of multi-fingered robotic hands: a review [J]. Appl. Comput. Math. 14(3), 238–247 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Fang, Y.F., Liu, H.G., Li, G.F., et al.: A multichannel surface emg system for hand motion recognition [J]. Int. J. Humanoid Robot. 12(2), 1550011 (2015)

    Article  Google Scholar 

  3. Chen, D.S., Li, G.F., Sun, Y., et al.: An interactive image segmentation method in hand gesture recognition. Sensors 17(2), 253 (2017)

  4. Chen, D.S., Li, G.F., Sun, Y., et al.: Fusion hand gesture segmentation and extraction based on CMOS sensor and 3D sensor [J]. Int. J. Wirel. Mob. Comput. 12(3), 305–312 (2017)

    Article  Google Scholar 

  5. Liao, Y.J., Li, G.F., Sun, Y., et al.: Simultaneous calibration: a joint optimization approach for multiple kinect and external cameras [J]. Sensors 17(7), 1491 (2017)

  6. Guan, R., Xu, X.M., Luo, Y.Y., et al.: A computer vision-based gesture detection and recognition technique [J]. Comput. Appl. Softw. 30(1), 155–159 (2013)

    Google Scholar 

  7. Yi, J.G., Chneg, J.H., Ku, X.H.: Review of gestures recognition based on vision [J]. Comput. Sci. 43(z1), 103–108 (2016)

    Google Scholar 

  8. Li, X.Z., Wu, J., Cui, Z.M., et al.: Sparse representation method of vehicle recognition in complex traffic scenes [J]. J. Image Gr. 17(3), 90–95 (2012)

    Google Scholar 

  9. Cui, M., Prasad, S.: Class-dependent sparse representation classifier for robust hyperspectral image classification [J]. IEEE Trans. Geosci. Remote Sens. 53(5), 2683–2695 (2015)

    Article  Google Scholar 

  10. Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  11. Meng, F.R., Tang, Z.Y., Wang, Z.X.: An improved redundant dictionary based on sparse representation for face recognition [J]. Multimed. Tools Appl. 76(1), 895–912 (2017)

    Article  Google Scholar 

  12. Li, G.F., Gu, Y.S., Kong, J.Y., et al.: Intelligent control of air compressor production process [J]. Appl. Math. Inf. Sci. 7(3), 1051–1058 (2013)

    Article  Google Scholar 

  13. Mohammadreza, B., Sridhar, K.: Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach[J]. Signal Image Video Process. 10(1), 113–120 (2016)

    Article  Google Scholar 

  14. Ning, Y.N., Li, D.Z., Han, X., et al.: Gesture recognition method based on sparse representation [J]. Comput. Eng. Des. 37(9), 2548–2552 (2016)

    Google Scholar 

  15. Li, G.F., Qu, P.X., Kong, J.Y., et al.: Coke oven intelligent integrated control system [J]. Appl. Math. Inf. Sci. 7(3), 1043–1050 (2013)

    Article  Google Scholar 

  16. Guo, Y.M., Zhao, G.Y., Pietikainen, M.: Dynamic facial expression recognition with atlas construction and sparse representation [J]. IEEE Trans. Image Process. 25(5), 1977–1992 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, W.J., Kong, L.F., Wang, M.Y.: Hand gesture recognition using saliency and histogram intersection kernel based sparse representation [J]. Multimed. Tools Appl. 75(10), 6021–6034 (2016)

    Article  Google Scholar 

  18. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cao, H., Chan, Y.T., So, H.C.: Maximum likelihood tdoa estimation from compressed sensing samples without reconstruction [J]. IEEE Signal Process. Lett. 24(5), 564–568 (2017)

    Article  Google Scholar 

  20. Bostock, M.J., Holland, D.J., Nietlispach, D.: Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction [J]. J. Biomol. NMR 68(2), 67–77 (2017)

    Article  Google Scholar 

  21. Liu, X.J.: An improved clustering-based collaborative filtering recommendation algorithm [J]. Clust. Comput. 20(2), 1281–1288 (2017)

    Article  Google Scholar 

  22. Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  23. Li, G.F., Miao, W., Jiang, G.Z., et al.: Intelligent control model and its simulation of flue temperature in coke oven [J]. Discret. Contin. Dyn. Syst. Ser. S (DCDS-S) 8(6), 1223–1237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, G.F., Kong, J.Y., Jiang, G.Z., et al.: Air-fuel ratio intelligent control in coke oven combustion process [J]. Inf.-An Int. Interdiscip. J. 15(11), 4487–4494 (2012)

  25. Donoho, D.L., Tsaig, Y., Drori, I., et al.: Sparsesolution of underdetermined linear equations by stagewise orthogonal matching pursuit [J]. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MATH  Google Scholar 

  26. Li, Y., Wang, Y.L.: Backtracking regularized stage-wised orthogonal matching pursuit algorithm [J]. J. Comput. Appl. 36(12), 3398–3401 (2016)

    Google Scholar 

  27. Blumensath, T., Davies, M.E.: Stagewise weak gradient pursuits [J]. IEEE Trans. Signal Process. 57(11), 4333–4346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuo, T.: Face recognition from a single image per person using deep architecture neural networks [J]. Clust. Comput. 19(1), 73–77 (2016)

    Article  Google Scholar 

  29. Yang, Z.Z., Yang, Z., Sun, L.H.: A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction [J]. Signal Process. 29(4), 486–496 (2013)

    Google Scholar 

  30. Yu, B., Qin, Y.M.: Generating test case for algebraic specification based on Tabu search and genetic algorithm [J]. Clust. Comput. 20(1), 277–289 (2017)

    Article  Google Scholar 

  31. Ju, Z.J., Liu, H.H.: A unified fuzzy framework for human-hand motion recognition [J]. IEEE Trans. Fuzzy Syst. 19(5), 901–913 (2011)

    Article  Google Scholar 

  32. Miao, W., Li, G.F., Sun, Y.: Gesture recognition based on sparse representation [J]. Int. J. Wirel. Mobile Comput. 11(4), 348–356 (2016)

    Article  Google Scholar 

  33. Donoho, D.: For most large underdetermined systems of linear equations the minimal \(l_{1}\)-norm solution is also the sparsest solution [J]. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements [J]. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cheng, Y., Feng, W., Feng, H., et al.: A sparsity adaptive subspace pursuit algorithm for compressive sampling [J]. Acta Electron. Sin. 38(8), 1914–1917 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants of National Natural Science Foundation of China (Grant Nos. 51575407, 51575338, 61273106, 51575412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongfa Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Sun, Y., Li, G. et al. Gesture recognition based on modified adaptive orthogonal matching pursuit algorithm. Cluster Comput 22 (Suppl 1), 503–512 (2019). https://doi.org/10.1007/s10586-017-1231-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1231-7

Keywords