Abstract
Aiming at the disadvantages of greedy algorithms in sparse solution, a modified adaptive orthogonal matching pursuit algorithm (MAOMP) is proposed in this paper. It is obviously improved to introduce sparsity and variable step size for the MAOMP. The algorithm estimates the initial value of sparsity by matching test, and will decrease the number of subsequent iterations. Finally, the step size is adjusted to select atoms and approximate the true sparsity at different stages. The simulation results show that the algorithm which has proposed improves the recognition accuracy and efficiency comparing with other greedy algorithms.
Similar content being viewed by others
References
Miao, W., Li, G.F., Jiang, G.Z., et al.: Optimal grasp planning of multi-fingered robotic hands: a review [J]. Appl. Comput. Math. 14(3), 238–247 (2015)
Fang, Y.F., Liu, H.G., Li, G.F., et al.: A multichannel surface emg system for hand motion recognition [J]. Int. J. Humanoid Robot. 12(2), 1550011 (2015)
Chen, D.S., Li, G.F., Sun, Y., et al.: An interactive image segmentation method in hand gesture recognition. Sensors 17(2), 253 (2017)
Chen, D.S., Li, G.F., Sun, Y., et al.: Fusion hand gesture segmentation and extraction based on CMOS sensor and 3D sensor [J]. Int. J. Wirel. Mob. Comput. 12(3), 305–312 (2017)
Liao, Y.J., Li, G.F., Sun, Y., et al.: Simultaneous calibration: a joint optimization approach for multiple kinect and external cameras [J]. Sensors 17(7), 1491 (2017)
Guan, R., Xu, X.M., Luo, Y.Y., et al.: A computer vision-based gesture detection and recognition technique [J]. Comput. Appl. Softw. 30(1), 155–159 (2013)
Yi, J.G., Chneg, J.H., Ku, X.H.: Review of gestures recognition based on vision [J]. Comput. Sci. 43(z1), 103–108 (2016)
Li, X.Z., Wu, J., Cui, Z.M., et al.: Sparse representation method of vehicle recognition in complex traffic scenes [J]. J. Image Gr. 17(3), 90–95 (2012)
Cui, M., Prasad, S.: Class-dependent sparse representation classifier for robust hyperspectral image classification [J]. IEEE Trans. Geosci. Remote Sens. 53(5), 2683–2695 (2015)
Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Meng, F.R., Tang, Z.Y., Wang, Z.X.: An improved redundant dictionary based on sparse representation for face recognition [J]. Multimed. Tools Appl. 76(1), 895–912 (2017)
Li, G.F., Gu, Y.S., Kong, J.Y., et al.: Intelligent control of air compressor production process [J]. Appl. Math. Inf. Sci. 7(3), 1051–1058 (2013)
Mohammadreza, B., Sridhar, K.: Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach[J]. Signal Image Video Process. 10(1), 113–120 (2016)
Ning, Y.N., Li, D.Z., Han, X., et al.: Gesture recognition method based on sparse representation [J]. Comput. Eng. Des. 37(9), 2548–2552 (2016)
Li, G.F., Qu, P.X., Kong, J.Y., et al.: Coke oven intelligent integrated control system [J]. Appl. Math. Inf. Sci. 7(3), 1043–1050 (2013)
Guo, Y.M., Zhao, G.Y., Pietikainen, M.: Dynamic facial expression recognition with atlas construction and sparse representation [J]. IEEE Trans. Image Process. 25(5), 1977–1992 (2016)
Yang, W.J., Kong, L.F., Wang, M.Y.: Hand gesture recognition using saliency and histogram intersection kernel based sparse representation [J]. Multimed. Tools Appl. 75(10), 6021–6034 (2016)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
Cao, H., Chan, Y.T., So, H.C.: Maximum likelihood tdoa estimation from compressed sensing samples without reconstruction [J]. IEEE Signal Process. Lett. 24(5), 564–568 (2017)
Bostock, M.J., Holland, D.J., Nietlispach, D.: Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction [J]. J. Biomol. NMR 68(2), 67–77 (2017)
Liu, X.J.: An improved clustering-based collaborative filtering recommendation algorithm [J]. Clust. Comput. 20(2), 1281–1288 (2017)
Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)
Li, G.F., Miao, W., Jiang, G.Z., et al.: Intelligent control model and its simulation of flue temperature in coke oven [J]. Discret. Contin. Dyn. Syst. Ser. S (DCDS-S) 8(6), 1223–1237 (2015)
Li, G.F., Kong, J.Y., Jiang, G.Z., et al.: Air-fuel ratio intelligent control in coke oven combustion process [J]. Inf.-An Int. Interdiscip. J. 15(11), 4487–4494 (2012)
Donoho, D.L., Tsaig, Y., Drori, I., et al.: Sparsesolution of underdetermined linear equations by stagewise orthogonal matching pursuit [J]. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)
Li, Y., Wang, Y.L.: Backtracking regularized stage-wised orthogonal matching pursuit algorithm [J]. J. Comput. Appl. 36(12), 3398–3401 (2016)
Blumensath, T., Davies, M.E.: Stagewise weak gradient pursuits [J]. IEEE Trans. Signal Process. 57(11), 4333–4346 (2009)
Zhuo, T.: Face recognition from a single image per person using deep architecture neural networks [J]. Clust. Comput. 19(1), 73–77 (2016)
Yang, Z.Z., Yang, Z., Sun, L.H.: A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction [J]. Signal Process. 29(4), 486–496 (2013)
Yu, B., Qin, Y.M.: Generating test case for algebraic specification based on Tabu search and genetic algorithm [J]. Clust. Comput. 20(1), 277–289 (2017)
Ju, Z.J., Liu, H.H.: A unified fuzzy framework for human-hand motion recognition [J]. IEEE Trans. Fuzzy Syst. 19(5), 901–913 (2011)
Miao, W., Li, G.F., Sun, Y.: Gesture recognition based on sparse representation [J]. Int. J. Wirel. Mobile Comput. 11(4), 348–356 (2016)
Donoho, D.: For most large underdetermined systems of linear equations the minimal \(l_{1}\)-norm solution is also the sparsest solution [J]. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements [J]. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Cheng, Y., Feng, W., Feng, H., et al.: A sparsity adaptive subspace pursuit algorithm for compressive sampling [J]. Acta Electron. Sin. 38(8), 1914–1917 (2010)
Acknowledgements
This work was supported by Grants of National Natural Science Foundation of China (Grant Nos. 51575407, 51575338, 61273106, 51575412).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, B., Sun, Y., Li, G. et al. Gesture recognition based on modified adaptive orthogonal matching pursuit algorithm. Cluster Comput 22 (Suppl 1), 503–512 (2019). https://doi.org/10.1007/s10586-017-1231-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-017-1231-7