Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Construction of a knee osteoarthritis diagnostic system based on X-ray image processing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In order to accurately diagnose knee osteoarthritis, a detection technique as well as its quantitative assessment based on X-ray image processing is proposed in this study. First, image segmentation is implemented on the basis of maximum between-class variance and region growing method. Second, the edge of the image concerned is filled based on calculations of mathematical morphology, followed by edge extraction, which realizes extraction of the image in the region of interest. Finally, processing and judgment concerning four indicators to determine knee osteoarthritis, namely, joint space asymmetry, articular sclerosis, rugged articular surface, and intra-articular loose bodies, were judged and judged. Our experimental results show that this technique can effectively detect and describe the features of knee osteoarthritis, which can be used as a tool for clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang, Y., Hua, Q., Ren, J., Zeng, F., Sheng, J., Liao, H., et al.: Eosinophilic hyperplastic lymphogranuloma: clinical diagnosis and treatment experience of 41 cases. Am. J. Otolaryngol. 38(5), 626 (2017)

    Article  Google Scholar 

  2. Dona, A.C., Coffey, S., Figtree, G.: Translational and emerging clinical applications of metabolomics in cardiovascular disease diagnosis and treatment. Eur. J. Prev. Cardiol. 23(15), 1578–1589 (2016)

    Article  Google Scholar 

  3. Allsop, M.J., Twiddy, M., Grant, H., Czoski-Murray, C., Mon-Williams, M., Mushtaq, F., et al.: Diagnosis, medication, and surgical management for patients with trigeminal neuralgia: a qualitative study. Acta Neurochir. 157(11), 1925–1933 (2015)

    Article  Google Scholar 

  4. Williams, B.T., Ahrberg, A.B., Goldsmith, M.T., Campbell, K.J., Shirley, L., Wijdicks, C.A., et al.: Ankle syndesmosis: a qualitative and quantitative anatomic analysis. Am. J. Sports Med. 43(1), 88–97 (2015)

    Article  Google Scholar 

  5. De, G.A., Watson, S., Ellis, L.M., Rodón, J., Tabernero, J., De, G.A., et al.: Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 12(4), 197–212 (2015)

    Article  Google Scholar 

  6. Krych, A.J., Sousa, P.L., King, A.H., Engasser, W.M., Stuart, M.J., Levy, B.A.: Meniscal tears and articular cartilage damage in the dislocated knee. Knee Surg. Sports Traumatol. Arthrosc. 23(10), 3019–3025 (2015)

    Article  Google Scholar 

  7. Hassan, E.B., Mirams, M., Ghasemzadeh, A., Mackie, E.J., Whitton, R.C.: Role of subchondral bone remodelling in collapse of the articular surface of thoroughbred racehorses with palmar osteochondral disease. Equine Vet. J. 48(2), 228 (2016)

    Article  Google Scholar 

  8. Thijssen, E., Van, C.A., Pm, V.D.K.: Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology. 54(4), 588 (2015)

    Article  Google Scholar 

  9. Horváth, Ádám, Tékus, V., Boros, M., Pozsgai, G., Botz, B., Borbély, Éva, et al.: Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res. Ther. 18(1), 6 (2016)

    Article  Google Scholar 

  10. Shah, F.A., Palmquist, A.: Evidence that osteocytes in autogenous bone fragments can repair disrupted canalicular networks and connect with osteocytes in de novo, formed bone on the fragment surface. Calcif. Tissue Int. 101(3), 321–327 (2017)

    Article  Google Scholar 

  11. Endrizzi, M., Basta, D., Olivo, A.: Laboratory-based X-ray phase-contrast imaging with misaligned optical elements. Appl. Phys. Lett. 107(12), 23–26 (2015)

    Article  Google Scholar 

  12. Sarapata, A., Fingerle, A., Braun, C., Pfeiffer, F., Herzen, J., Kaiser, K., et al.: Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum. Opt. Express. 23(1), 523 (2015)

    Article  Google Scholar 

  13. Zhang, J., Zhou, G., Tian, D., Lin, R., Peng, G., Su, M.: Microdissection of human esophagogastric junction wall with phase-contrast X-ray CT imaging. Sci. Rep. 5(5), 13831 (2015)

    Article  Google Scholar 

  14. Chuklin, P., Chalermpanapan, V., Nookeaw, T., Saithong, S., Chainok, K., Phongpaichit, S., et al.: Synthesis, X-ray structure of organometallic ruthenium (II) p-cymene complexes based on P- and N-donor ligands and their in vitro antibacterial and anticancer studies. J. Organomet. Chem. 846, 242–250 (2017)

    Article  Google Scholar 

  15. Li, K., Etschmann, B., Rae, N., Reith, F., Ryan, C.G., Kirkham, R., et al.: Ore petrography using megapixel X-ray imaging: rapid insights into element distribution and mobilization in complex Pt and U-Ge-Cu ores. Econ. Geol. 111(2), 487–501 (2016)

    Article  Google Scholar 

  16. Shen, J., Chen, P., Su, L., Shi, T., Tang, Z., Liao, G.: X-ray inspection of TSV defects with self-organizing map network and Otsu algorithm. Microelectron. Reliab. 67, 129–134 (2016)

    Article  Google Scholar 

  17. Begelman, M.C., Armitage, P.J., Reynolds, C.S.: Accretion disk dynamo as the trigger for X-ray binary state transitions. Astrophys. J. 809(2), 118 (2015)

    Article  Google Scholar 

  18. Churazov, E., Vikhlinin, A., Sunyaev, R.: (No) dimming of X-ray clusters beyond z ~ 1 at fixed mass: crude redshifts and masses from raw X-ray and SZ data. Mon. Not. R. Astron. Soc. 450(2), 1984–1989 (2015)

    Article  Google Scholar 

  19. Zhuge, X., Palenstijn, W.J., Batenburg, K.J.: TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation. IEEE Trans. Image Process. 25(1), 455–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chies, L.A.S., Rodr, B.P.D.G., Arag, A.S.N., Bamford, P.S., Gray, E.M., Wolf, C., et al.: OMEGA–OSIRIS mapping of emission-line galaxies in A901/2–I. Survey description, data analysis, and star formation and AGN activity in the highest density regions. Mon. Not. R. Astron. Soc. 450(4), 4458 (2015)

    Article  Google Scholar 

  21. Banerjee, S., Mitra, S., Shankar, B.U.: Single seed delineation of brain tumor using multi-thresholding. Inf. Sci. 330(C), 88–103 (2016)

    Article  Google Scholar 

  22. Lehermeier, C., Teyssèdre, S., Schön, C.C.: Genetic gain increases by applying the usefulness criterion with improved variance prediction in selection of crosses. Genetics. 207(4), 1651 (2017)

    Google Scholar 

  23. Malek, A.A., Wan, E.Z.W.A.R., Ibrahim, A., Mahmud, R., Yasiran, S.S., Jumaat, A.K.: Region and boundary segmentation of microcalcifications using seed-based region growing and mathematical morphology. Proc. Soc. Behav. Sci. 8(1), 634–639 (2010)

    Article  Google Scholar 

  24. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circuits. 23(2), 358–367 (2002)

    Article  Google Scholar 

  25. Liao, T., Li, X., Xu, G., Zhang, Y.J.: Secondary laplace operator and generalized Giaquinta–Hildebrandt operator with applications on surface segmentation and smoothing. Comput. Aided Des. 70(C), 56–66 (2016)

    Article  MathSciNet  Google Scholar 

  26. Zheng, Y., Zhou, Y., Zhou, H., Gong, X.: Ultrasound image edge detection based on a novel multiplicative gradient and canny operator. Ultrason. Imaging. 37(3), 238–250 (2015)

    Article  Google Scholar 

  27. Yoshimoto, H.: Image processing apparatus, display apparatus, and image processing method. J. Oral Rehabil. 98(1), 231–233 (2014)

    Google Scholar 

  28. Qin, H.B., Zhu, J.M., Lin, Z.Q., Xu, W.P., Tan, D.C., Zheng, L.R., et al.: Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environ. Pollut. 225, 361–369 (2017)

    Article  Google Scholar 

  29. Buchmueller, O., Dolan, M.J., Malik, S.A., Mccabe, C.: Characterising dark matter searches at colliders and direct detection experiments: vector mediators. J. High Energy Phys. 2015(1), 37 (2015)

    Article  Google Scholar 

  30. Chen, Y., Guan, G., Matsushita, S., Li, X.: Robust stochastic gradient-based adaptive filtering algorithms to realize compressive sensing against impulsive interferences. In: Control and Decision Conference. IEEE (2016)

  31. Schawaller, M., Schenck, K., Hoffmeister, S.A., Schaller, H., Schaller, H.C.: On the convergence of alternating direction Lagrangian methods for nonconvex structured optimization problems. IEEE Trans. Control Netw. Syst. 3(3), 296–309 (2016)

    Article  MathSciNet  Google Scholar 

  32. Neacsiu, A.D., Wardciesielski, E.F., Linehan, M.M.: Emerging approaches to counseling intervention: dialectical behavior therapy. Couns. Psychol. 40(7), 1003–1032 (2016)

    Article  Google Scholar 

  33. Zhang, T., Yang, X., Hu, S., Su, F.: Extraction of coastline in aquaculture coast from multispectral remote sensing images: object-based region growing integrating edge detection. Remote Sens. 5(9), 4470–4487 (2013)

    Article  Google Scholar 

  34. Pantic, I., Nesic, Z., Pantic, J.P., Radojevićškodrić, S., Cetkovic, M., Jovanovic, G.B.: Fractal analysis and gray level co-occurrence matrix method for evaluation of reperfusion injury in kidney medulla. J. Theor. Biol. 397(2), 61–67 (2016)

    Article  Google Scholar 

  35. Fujita, A., Buch, K., Li, B., Kawashima, Y., Qureshi, M.M., Sakai, O.: Difference between HPV-positive and HPV-negative non-oropharyngeal head and neck cancer: texture analysis features on CT. J. Comput. Assist. Tomogr. 40(1), 43 (2016)

    Article  Google Scholar 

  36. Roach, B.L., Hung, C.T., Cook, J.L., Ateshian, G.A., Tan, A.R.: Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints. Methods. 84, 103–108 (2015)

    Article  Google Scholar 

  37. Dibbern, K., Kempton, L.B., Higgins, T.F., Morshed, S., Mckinley, T.O., Marsh, J.L., et al.: Fractures of the tibial plateau involve similar energies as the tibial pilon but greater articular surface involvement. J. Orthop. Res. 35(3), 618–624 (2017)

    Article  Google Scholar 

  38. Cigan, A.D., Durney, K.M., Nims, R.J., Vunjaknovakovic, G., Hung, C.T., Ateshian, G.A.: Nutrient channels aid the growth of articular surface-sized engineered cartilage constructs. Tissue Eng. Part A. 22(17), 1063–1074 (2016)

    Article  Google Scholar 

  39. Wu, T., Wu, H., Du, Y., Kwok, N., Peng, Z.: Imaged wear debris separation for on-line monitoring using gray level and integrated morphological features. Wear. 316(1–2), 19–29 (2014)

    Article  Google Scholar 

  40. Skoura, A., Nuzhnaya, T., Megalooikonomou, V.: Integrating edge detection and fuzzy connectedness for automated segmentation of anatomical branching structures. Int. J. Bioinf. Res. Appl. 10(1), 93–109 (2014)

    Article  Google Scholar 

  41. Varga, B., Karacs, K.: Towards a balanced trade-off between speed and accuracy in unsupervised data-driven image segmentation. Mach. Vis. Appl. 24(6), 1267–1294 (2013)

    Article  Google Scholar 

  42. Javadi, M., Azar, S. M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.: Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In: The Robocup International Symposium (2017)

  43. Michetti, J., Georgelin-Gurgel, M., Mallet, J.P., Diemer, F., Boulanouar, K.: Influence of cone beam CT parameters on the output of an automatic edge-detection based endodontic segmentation. Dentomaxillofac. Radiol. 44(8), 20140413 (2015)

    Article  Google Scholar 

  44. Cheung, Y.M., Li, M., Cao, X., You, X.: Lip segmentation under map-MRF framework with automatic selection of local observation scale and number of segments. IEEE Trans. Image Process. 23(8), 3397–3411 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen, R., Xu, J., Chen, H., Su, J., Zhang, Z., Chen, K.: Accurate calibration method for camera and projector in fringe patterns measurement system. Appl. Opt. 55(16), 4293 (2016)

    Article  Google Scholar 

  46. Archibald, R., Hu, J., Gelb, A., Farin, G.: Improving the accuracy of volumetric segmentation using pre-processing boundary detection and image reconstruction. IEEE Trans. Image Process. 13(4), 459–466 (2004)

    Article  Google Scholar 

  47. Schorsch, S., Hours, J.H., Vetter, T., Mazzotti, M., Jones, C.N.: An optimization-based approach to extract faceted crystal shapes from stereoscopic images. Comput. Chem. Eng. 75, 171–183 (2015)

    Article  Google Scholar 

  48. Gain, A.L., Carroll, J., Paulino, G.H., Lambros, J.: A hybrid experimental/numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials. Int. J. Fract. 169(2), 113–131 (2015)

    Article  MATH  Google Scholar 

  49. Wang, Q., Niemi, J., Tan, C.M., You, L., West, M.: Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytom. Part A. 77A(1), 101–110 (2010)

    Google Scholar 

  50. Merazi-Meksen, T., Boudraa, M., Boudraa, B.: Mathematical morphology for TOFD image analysis and automatic crack detection. Ultrasonics. 54(6), 1642–1648 (2014)

    Article  MATH  Google Scholar 

  51. Matsukuma, S., Takeo, H., Okada, K., Sato, K.: Fatty lesions in intra-articular loose bodies: a histopathological study of non-primary synovial chondromatosis cases. Virchows Arch. 460(1), 103–108 (2012)

    Article  Google Scholar 

  52. Petit, A., Redout, E.M., Ch, V.D.L., de Grauw, J.C., Müller, B., Meyboom, R., et al.: Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials. 53, 426–436 (2015)

    Article  Google Scholar 

  53. Yamazaki, H., Uchiyama, S., Komatsu, M., Hashimoto, S., Kobayashi, Y., Sakurai, T., et al.: Arthroscopic assistance does not improve the functional or radiographic outcome of unstable intra-articular distal radial fractures treated with a volar locking plate: a randomised controlled trial. Bone Joint J. 97-B(7), 957 (2015)

    Article  Google Scholar 

  54. Li, X., Yu, S., Hui, C., Zhu, G., Yuan, L., Qiang, W., et al.: Hydroxycamptothecin induces apoptosis of fibroblasts and prevents intraarticular scar adhesion in rabbits by activating the IRE-1 signal pathway. Eur. J. Pharmacol. 781, 139–147 (2016)

    Article  Google Scholar 

  55. Nishino, K., Omori, G., Koga, Y., Kobayashi, K., Sakamoto, M., Tanabe, Y., et al.: Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee. Gait Posture. 42(2), 127 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The project is funded by Zhejiang Science and Technology Department Public Welfare Project (Grant: 2017C35001) and Ningbo Municipal Bureau of Science and Technology Project (Grants: 2017A10027, 2017C50023, 2016C10056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, N. & Lyu, Q. Construction of a knee osteoarthritis diagnostic system based on X-ray image processing. Cluster Comput 22 (Suppl 6), 15533–15540 (2019). https://doi.org/10.1007/s10586-018-2677-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2677-y

Keywords