Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Cloud and IoT-based emerging services systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The emerging services and analytics advocate the service delivery in a polymorphic view that successfully serves a variety of audience. The amalgamation of numerous modern technologies such as cloud computing, Internet of Things (IoT) and Big Data is the potential support behind the emerging services Systems. Today, IoT, also dubbed as ubiquitous sensing is taking the center stage over the traditional paradigm. The evolution of IoT necessitates the expansion of cloud horizon to deal with emerging challenges. In this paper, we study the cloud-based emerging services, useful in IoT paradigm, that support the effective data analytics. Also, we conceive a new classification called CNNC {Clouda, NNClouda} for cloud data models; further, some important case studies are also discussed to further strengthen the classification. An emerging service, data analytics in autonomous vehicles, is then described in details. Challenges and recommendations related to privacy, security and ethical concerns have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang, V.: An overview, examples and impacts offered by Emerging services and analytics in cloud computing. Int. J. Inf. Manag. (2015)

  2. Chang, V., Ramachandran, M., Wills, G., Walters, R.J., Kantere, V., Li, C.S.: ESaaSA 2015-Proceedings of the International Workshop on Emerging Software as a Service and Analytics, Lisbon, Portugal, May 20–22 (2015)

  3. Chen, Y.K.: Challenges and opportunities of internet of things. In: Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pp. 383–388. IEEE (2012)

  4. Monnier, O.: A smarter grid with the Internet of Things. Texas Instruments White Paper (2013)

  5. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  6. Hwang, J.-S., Young, O.G., Choe, H.: Smart Cities Seoul: a case study ITU-T technology watch report, Seoul, Feb 2013, p. 8 (2013)

  7. Farooq, M.U., Waseem, M., Khairi, A., Mazhar, S.: A critical analysis on the security concerns of Internet of Things (IoT). Int. J. Comput. Appl. 111(7), 1–6 (2015)

    Google Scholar 

  8. Evans, D.: The Internet of Things: how the next evolution of the internet is changing everything. Cisco (2011) Accessed 4 Apr 2018

  9. Villars, R.L., Olofson, C.W., Eastwood, M.: Big Data: What it is and why you should care. IDC White Paper. IDC, Framingham (2011)

    Google Scholar 

  10. Curino, C., Jones, E.P., Popa, R.A., Malviya, N., Wu, E., Madden, S., Zeldovich, N.: Relational cloud: a database-as-a-service for the cloud. In: 5th Biennial Conference on Innovative Data Systems Research, CIDR, January 9–12. Asilomar, California (2011)

  11. Seibold, M., Kemper, A.: Database-as-a-Service. Datenbank-Spektrum 12(1), 59–62 (2012)

    Article  Google Scholar 

  12. Wolfe, A.: Why Database-as-a-Service (DBaaS) Will Be The Breakaway Technology of 2014. Forbes.com, New York City, USA. http://www.forbes.com/sites/oracle/2013/12/05/why-database-as-a-Service-dbaas-will-be-the-breakaway-technology-of-2014/ (2013). Accessed 27 Mar 2018

  13. Ashton, K.: That “Internet of Things” thing. RFiD J 22(7), 97–114 (2009)

    Google Scholar 

  14. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realising the Internet of Things, Cluster of European Research Projects on the Internet of Things—CERP IoT (2010)

  15. IBM.: What is Big Data? Bringing Big Data to the enterprise. http://www.ibm.com/software/data/bigdata/ (2012)

  16. O’Leary, D.E.: Artificial intelligence and Big Data. IEEE Intell. Syst. 28(02), 96–99 (2013)

    Article  Google Scholar 

  17. Palermo, E.: Big Data: do the risks outweigh the rewards? Business News Daily. Source: www.businessnewsdaily.com/5825-big-data-risks-rewards.html (2014). Accessed 31 Feb 2015

  18. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big Data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation (2011). Accessed 24 Jan 2015

  19. Hilbert, M., López, P.: The world’s technological capacity to store, communicate, and compute information. Science 332(6025), 60–65 (2011)

    Article  Google Scholar 

  20. Nugent, A., Halper, F., Kaufman, M.: Big data for dummies. Wiley, New York (2013)

    Google Scholar 

  21. Sharma, S., Tim, U.S., Wong, J., Gadia, S., Sharma, S.: A brief review on leading big data models. Data Sci. J. 13, 138–157 (2014)

    Article  Google Scholar 

  22. Sharma, S., Shandilya, R., Patnaik, S., Mahapatra, A.: Leading NoSQL models for handling Big Data: a brief review, Int. J. Bus. Inf. Syst. 18(4) (2015a)

  23. Sharma, S., Tim, U.S., Gadia, S., Wong, J., Shandilya, R., Peddoju, S.: Classification and comparison of NoSQL big data models. Int. J. Big Data Intell. 2(2) (2015b)

  24. Sharma, S.: Expanded cloud plumes hiding Big Data ecosystem. Future Gener. Comput. Syst. 59, 63–92 (2016).

    Article  Google Scholar 

  25. Cerri, D., Della Valle, E., Marcos, D.D.F., Giunchiglia, F., Naor, D., Nixon, L., Simperl, E.: Towards knowledge in the cloud. In: On the Move to Meaningful Internet Systems: OTM 2008 Workshops, pp. 986–995 (2008)

  26. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014)

    Article  Google Scholar 

  27. Kumar, V.: Customer lifetime value: the path to profitability. Now Publishers Inc, Breda (2008)

    Google Scholar 

  28. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

    Article  Google Scholar 

  29. Antcheva, I., Ballintijn, M., Bellenot, B., Biskup, M., Brun, R., Buncic, N., et al.: ROOT—a C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 180(12), 2499–2512 (2009)

    Article  Google Scholar 

  30. Miner, G., Nisbet, R., Elder, J.: Handbook of statistical analysis and datamining applications. Academic Press, Cambridge (2009)

    MATH  Google Scholar 

  31. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21 (2011)

    Google Scholar 

  32. Hanson, R.: YapDatabaseCloudKit. YapDatabase. http://www.github.com/yapstudios/YapDatabase/wiki/YapDatabaseCloudKit (2015). Accessed 11 Apr 2015

  33. Google Inc.: Google cloud platform. https://cloud.google.com/datastore/docs/concepts/overview (2010). Accessed 11 Apr 2018

  34. Plurk.com.: Lightcloud: Distributed and persistent key-value database. Plurk Open Source. http://opensource.plurk.com/LightCloud/ (2009). Accessed 12 Apr 2015

  35. FAL Lab.: Tokyo Tyrant: network interface of Tokyo Cabinet. http://fallabs.com/tokyotyrant/ (2010). Accessed 12 Apr 2018

  36. Chu, S.: Memcachedb. http://memcachedb.org/ (2008). Accessed 12 Apr 2015

  37. Salihefendic, A.: LightCloud adds support for Redis. http://amix.dk/blog/viewEntry/19458 (2009). Accessed 18 Apr 2015

  38. Cloudera.: CDH Proven, enterprise-ready Hadoop distribution–100% open source. http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html (2012b). Accessed 14 Apr 2018

  39. Elkabany, K., Staley, A.: PiCloud client-side library. https://pypi.python.org/pypi/cloud (2014). Accessed 14 Apr 2018

  40. Cloud, A.E.C.: Amazon web services. Retrieved November, 9, 2011. http://aws.amazon.com/ (2011). Accessed 14 Apr 2018

  41. Bloor, R.: Big data analytics—this time it’s personal. The Bloor Group. https://www.1010data.com/uploads/files/1010data_Robin_Bloor,_Ph_D,_Big_Data_Analytics_white_paper.pdf (2011). Accessed 14 Apr 2018

  42. Silver, H.C.: Algebraix Data Corporation. www.algebraixdata.com/ (2005). Accessed 17 Apr 2015

  43. Microsoft Azure.: DocumentDB: A fully-managed, highly-scalable, NoSQL document database service. http://azure.microsoft.com/en-us/services/documentdb/ (2015). Accessed 17 Apr 2015

  44. Groschupf, S.: Datameer Inc. http://www.datameer.com/ (2009). Accessed 17 Apr 2015

  45. Schneider, R.D.: Hadoop for Dummies. John Willey & sons, New York (2012)

    Google Scholar 

  46. Anderson, J., Bendiken, A., Huckabee, J.: Dydra: networks made friendly, A product of Datagraph, Inc. http://dydra.com. Accessed 17 Apr 2015

  47. Pan, J.Z.: Resource description framework. In: Handbook on Ontologies, pp. 71–90. Springer Berlin Heidelberg, (2009)

  48. Kass-Hout, T.: AWS case study: US Centers for Disease Control and Prevention (CDC). http://aws.amazon.com/solutions/case-studies/us-centers-for-disease-control-and-prevention/ (2013). Accessed 25 Apr 2015

  49. Cloudera.: Dell SecureWorks slashes the cost of storage with Dell, Cloudera Hadoop solution. http://www.cloudera.com/content/dam/cloudera/Resources/PDF/casestudy/Dell_SecureWorks_Case_Study.pdf (2012a). Accessed 25 Apr 2018

  50. Kobashigawa-Bates, L.: AWS case study: expedia. http://aws.amazon.com/solutions/case-studies/expedia/ (2010). Accessed 26 Apr 2015

  51. Cureton, L.: AWS Case Study: NASA/JPL’s Mars Curiosity Mission. https://www.aws.amazon.com/solutions/case-studies/nasa-jpl-curiosity/ (2012). Accessed 28 Apr 2018

  52. TSE, E.: AWS case study: Netflix. http://aws.amazon.com/solutions/case-studies/netflix/ (2015). Accessed 30 Apr 2015

  53. Chang, V., Walters, R., Wills, G.: Business integration-as-a-service. Int. J. Cloud Appl. Comput. 2(1), 16–40 (2012)

    Google Scholar 

  54. Chang, V.: Business integration as a service: computational risk analysis for small and medium enterprises adopting SAP. Int. J. Next-Gener. Comput. 4(3) (2013)

  55. Sano, M.D.: Business intelligence-as-a-Service: a new approach to manage business processes in the cloud. In: WETICE Conference (WETICE), 2014 IEEE 23rd International, pp. 155–160. IEEE (2014)

  56. Chang, V.: The business intelligence as a service in the cloud. Future Gener. Comput. Syst. 37, 512–534 (2014)

    Article  Google Scholar 

  57. Chang, V., Walters, R.J., Wills, G.: The development that leads to the Cloud computing business framework. Int. J. Inf. Manage. 33(3), 524–538 (2013)

    Article  Google Scholar 

  58. Zulkernine, F., Martin, P., Zou, Y., Bauer, M., Gwadry-Sridhar, F., and Aboulnaga, A.: Towards cloud-based analytics-as-a-Service (CLAaaS) for big data analytics in the cloud. In: Big Data (BigData Congress), IEEE International Congress on, pp. 62–69. IEEE (2013)

  59. Vu, Q.H., Pham, T.V., Truong, H.L., Dustdar, S., Asal, R.: Demods: a description model for data-as-a-service. In: Advanced Information Networking and Applications (AINA), 2012 IEEE 26th International Conference on, pp. 605–612. IEEE (2012)

  60. Nepal, S., Chen, S., Yao, J., Thilakanathan, D.: DIaaS: data integrity-as-a-Service in the cloud. In: Cloud Computing (CLOUD), 2011 IEEE International Conference on, pp. 308–315. IEEE (2011)

  61. Liu, R., Wang, H.W., Monreale, A., Pedreschi, D., Giannotti, F., Guo, W.: AUDIO: An integrity auditing framework of outlier-mining-as-a-service systems. In: Machine Learning and Knowledge Discovery in Databases, pp. 1–18. Springer Berlin Heidelberg (2012)

  62. Zaslavsky, A., Perera, C., Georgakopoulos, D.: Sensing as a service and big data. arXiv:1301.0159 (2013)

  63. Gunawi, H.S., Do, T., Hellerstein, J.M., Stoica, I., Borthakur, D., Robbins, J.: Failure-as-a-Service (faas): A cloud service for large-scale, online failure drills, p. 3. University of California, Berkeley (2011)

    Google Scholar 

  64. Shende, J.R.G.: Forensics-as-a-Service. Cybercrime and cloud forensics: applications for investigation processes: applications for investigation processes, p. 266 (2012)

  65. Takabi, H., Joshi, J.B.: Policy management-as-a-Service: an approach to manage policy heterogeneity in cloud computing environment. In: System Science (HICSS), 2012 45th Hawaii International Conference on, pp. 5500–5508. IEEE (2012)

  66. Baliga, A., Chen, X., Coskun, B., de los Reyes, G., Lee, S., Mathur, S., & Van der Merwe, J.E: VPMN: virtual private mobile network towards mobility-as-a-service. In: Proceedings of the second international workshop on Mobile cloud computing and services, pp. 7–12. ACM (2011)

  67. Cherrier, S., Ghamri-Doudane, Y.M.: The “object-as-a-service” paradigm. In: Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–7. IEEE (2014)

  68. Pawar, P.S., Sajjad, A., Dimitrakos, T., Chadwick, D.W.: Security-as-a-Service in multi-cloud and federated cloud environments. In: Trust Management IX, pp. 251–261. Springer International Publishing (2015)

  69. Sheng, X., Tang, J., Xiao, X., Xue, G.: Sensing-as-a-Service: challenges, solutions and future directions. IEEE Sens. J. 13(10), 3733–3741 (2013)

    Article  Google Scholar 

  70. Distefano, S., Merlino, G., Puliafito, A.: Sensing and actuation-as-a-Service: a new development for clouds. In Network Computing and Applications (NCA), 11th IEEE International Symposium, pp. 272–275 (2012b)

  71. Dash, S.K., Mohapatra, S., Pattnaik, P.K.: A survey on applications of wireless sensor network using cloud computing. Int. J. Comput. Sci. Eng. Technol. 1(4), 50–55 (2010)

    Google Scholar 

  72. Rao, B.P., Saluia, P., Sharma, N., Mittal, A., Sharma, S.V.: Cloud computing for Internet of Things & sensing based applications. In Sensing Technology (ICST), 2012 Sixth International Conference on, pp. 374–380. IEEE (2012)

  73. Patel, H., Patel, D., Chaudhari, J., Patel, S., Prajapati, K.: Tradeoffs between performance and security of cryptographic primitives used in storage-as-a-Service for cloud computing. In: Proceedings of the CUBE International Information Technology Conference, pp. 557–560. ACM (2012)

  74. Distefano, S., Merlino, G., Puliafito, A.: Enabling the cloud of things. In: Innovative mobile and internet services in ubiquitous computing (IMIS), 2012 Sixth International Conference on, pp. 858–863 (2012a)

  75. Prati, A., Vezzani, R., Fornaciari, M., Cucchiara, R.: Intelligent video surveillance as a service. In: Intelligent Multimedia Surveillance, pp. 1–16. Springer Berlin Heidelberg (2013)

  76. Mark, C., Magnus, E., Jonathan, P.H., Richard, M.M.: Autonomous driving in urban environments: approaches, lessons and challenges. Philos Trans 1928, 4649 (2010)

    Google Scholar 

  77. Hawes, M.: Connected and autonomous vehicles- the UK economoic opportunity. http://www.smmt.co.uk/wp%E2%80%93-The-UK-Economic-Opportu…1.pdf (2015). Accessed 28 Mar 2016

  78. Xie, B., Li, K., Wang, J., Zhao, S.: Vehicle networking concept and its automotive industry applications based on‘triple network convergence’. J. Autom. Saf. Engergy 4, 348 (2013)

    Google Scholar 

  79. O’Leary, D.E.: Ethics for Big Data and analytics. IEEE Intell. Syst. pp. 81–84 (2016)

  80. Kord, D.: Ethics of Big Data. O’Rilly Media Inc, Beijing (2012)

    Google Scholar 

  81. Joy, J., Gerla, M.: Internet of vehicles and autonomous connected car—privacy and security issues. In: ICCCN, Vancouver, IEEE (2017)

  82. China Automotive: Acquisdata Industry SnapShot: China—Automotive (7614), p. 1 (2017)

  83. Guo, L., Li, Q., Ye, T., Wu, J., Li, J., Dong, M., Ota, K.: A secure mechanism for big data collection in large scale internet of vehicle. IEEE Internet Things J. 4(2), 10 (2017)

    Article  Google Scholar 

  84. Datta, S.K., Haerri, J., Bonnet, C., Ferreira Da Costa, R.: Vehicles as connected resources: opportunities and challenges for the future. IEEE Veh. Technol. Mag. 12(2), 26 (2017)

    Article  Google Scholar 

  85. Haque, O.: Pachube. http://www.pachube.com (2004)

  86. Nimbits Inc. (2015). Nimbits Data Logging Cloud Sever. http://www.nimbits (2015)

  87. Digi International Inc.: iDigi Device Cloud. http://www.digi.com/cloud-overview (2015)

  88. ThingSpeak.: Internet of Things—ThingSpeak. http://www.thingspeak.com (2014)

  89. Madria, S., Kumar, V., Dalvi, R.: Sensor cloud: a cloud of virtual sensors. IEEE Softw 31(2), 70–77 (2014)

    Article  Google Scholar 

  90. Chang, V., Wills, G.: A model to compare cloud and non-cloud storage of Big Data. Future Gener. Comput. Syst. 57, 56–76 (2015)

    Article  Google Scholar 

  91. Chang, V., Kuo, Y.H., Ramachandran, M.: Cloud computing adoption framework–a security framework for business clouds. Future Gener. Comput. Syst. 27, 24–41 (2015)

    Google Scholar 

  92. West, J., Goldenberg, S.: Apple defends green credentials of cloud computing services. Guardian Newspaper Group, 17 (2012)

  93. David, S., Sun, Z.: Meta-analysis of big data security and privacy: scholarly literature gaps. IEEE Consum. Electron. Mag., pp. 4035 (2016)

  94. Applin, S.: Autonomous vehicle ethics: stock or custom? IEEE Consumer Electron. Mag. 3, 108 (2017)

    Article  Google Scholar 

  95. Ring, T.: Feature: connected cars—the next targe tfor hackers. Netw Secur 2015, 11–16 (2015)

    Article  Google Scholar 

  96. Greenberg, A.: Hackers Remotely Kill a Jeep on the Highway—with me in it’. http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ (2016). Accessed 2 Mar 2018

  97. Crayton, T.J., Meier, B.M.: Autonomous vehicles: developing a public health research agenda to frame the future of transportation policy. J. Transp. Health 6, 245–252 (2017)

    Article  Google Scholar 

  98. Fleetwood, J.: Public health, ethics, and autonomous vehicles. A J Public Health 4, 532 (2017)

    Article  Google Scholar 

  99. Claus, S., Silk, N., Wiltshire, C.: Potential impacts of autonomous vehicles on the UK insurance sector. Bank Engl Q Bull 57(1), 40–48 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugam Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Chang, V., Tim, U.S. et al. Cloud and IoT-based emerging services systems. Cluster Comput 22, 71–91 (2019). https://doi.org/10.1007/s10586-018-2821-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2821-8

Keywords