Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Blockchain structures to guarantee logging integrity of a digital platform to support community-dwelling older adults

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Current epidemiological changes promote a trend toward distributed care provision in the community. Digital platforms allowing the exchange of patient information are essential in optimizing community care. However, these digital platforms should present trustworthy environments. This article reports a study aiming to implement and evaluate a Logging Service based on blockchain technologies to guarantee the integrity of the activity logs of the Social Cooperation for Integrated Assisted Living platform. This platform of services was developed to support integrated care and assistance of community-dwelling older adults and uses the Fast Healthcare Interoperability Resources to promote information interoperability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hägglund, M., Scandurra, I., Koch, S.: Studying intersection points—an analysis of information needs for shared homecare of elderly patients. J. Inf. Technol. Healthc. 7(1), 23–42 (2009)

    Google Scholar 

  2. Sousa, M., Arieira, L., Queirós, A., Martins, A.I., Rocha, N.P., Augusto, F., Duarte, F., Neves, T., Damasceno, A.: SOCIAL platform. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds.) Trends and Advances in Information Systems and Technologies. WorldCIST'18 2018. Advances in Intelligent Systems and Computing, vol. 746, pp. 1162–1168. Springer, Cham (2018)

    Google Scholar 

  3. Rosa, M., Barraca, J.P., Rocha, N.P.: Logging Integrity with Blockchain Structures. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol. 932, pp. 83–93. Springer, Cham (2019)

    Google Scholar 

  4. King, J., Williams, L.: Log your CRUD: design principles for software logging mechanisms. In: Proceedings of the 2014 Symposium and Bootcamp on the Science of Security (HotSoS '14), pp. 5–15. ACM, Raleigh (2014)

  5. Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., Zhou, Y.: The game of twenty questions: do you know where to log? In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems (HotOS '17), pp. 125–131. ACM, Whistler (2017)

  6. Yang, K.: Aggregated containerized logging solution with fluentd, elasticsearch and kibana. Int. J. Comput. Appl. 150(3), 29–31 (2016)

    Google Scholar 

  7. Stackify, Retrace. https://stackify.com/retrace/ (2018). Accessed 22 October 2018

  8. Sekharan, S.S., Kandasamy, K.: Profiling SIEM tools and correlation engines for security analytics. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 717–721. IEEE, Chennai, India (2017)

  9. Okumura, M., Fujimura, S.: Constructing a log collecting system using using Splunk and its application for service support. In: Proceedings of the 2016 ACM on SIGUCCS Annual Conference (SIGUCCS '16), pp. 103–106. ACM, Denver (2016)

  10. Hartung, G.: Secure audit logs with verifiable excerpts. In: Cryptographers’ Track at the RSA Conference, pp. 183–199. Springer, Cham (2016)

  11. Ning, F., Wen, Y., Shi, G., Meng, D.: Efficient tamper-evident logging of distributed systems via concurrent authenticated tree. In: 36th IEEE International Performance Computing and Communications Conference, pp. 1–9. IEEE, San Diego (2017)

  12. Lin, C.Y., Chang, M.C., Chiu, H.C., Shyu, K.H.: Secure logging framework integrating with cloud database. In: 2015 International Carnahan Conference on Security Technology (ICCST), pp. 13–17. IEEE, Taipei (2015)

  13. Zawoad, S., Mernik, M., Hasan, R.: A forensics aware language for secure logging. In: Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pp. 1579–1586. IEEE, Warsaw (2013)

  14. Rajalakshmi, J. R., Rathinraj, M., Braveen, M.: Anonymizing log management process for secure logging in the cloud. In: 2014 International Conference on Circuit, Power and Computing Technologies, pp. 1559–1564. IEEE, Kanyakumari (2014)

  15. Gupta, S.: Blockchain—The Foundation Behind Bitcoin. Wiley, New York (2017)

    Google Scholar 

  16. Franciscon, E.A., Nascimento, M.P., Granatyr, J., Weffort, M.R., Lessing, O.R., Scalabrin, E.E.: A systematic literature review of blockchain architectures applied to public services. In: 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 33–38. IEEE, Thuckalay (2019)

  17. Casino, F., Dasaklis, T.K., Patsakis, C.: A systematic literature review of blockchain-based applications: current status, classification and open issues. Telematics Inform. 36, 55–81 (2018)

    Article  Google Scholar 

  18. Gupta, B.B. (ed.): Computer and cyber security: principles, algorithm, applications, and perspectives. CRC Press, Boca Raton (2018)

    Google Scholar 

  19. López, D., Farooq, B.: A blockchain framework for smart mobility. In: IEEE International Smart Cities Conference (ISC2), pp. 1–7. IEEE (2018).

  20. Hussien, H.M., Yasin, S.M., Udzir, S.N.I., Zaidan, A.A., Zaidan, B.B.: A systematic review for enabling of develop a blockchain technology in healthcare application: taxonomy, substantially analysis, motivations, challenges, recommendations and future direction. J. Med. Syst. 43(10), 320 (2019)

    Article  Google Scholar 

  21. Xu, M., Chen, X., Kou, G.: A systematic review of blockchain. Financ. Innov. 5(1), 27 (2019)

    Article  Google Scholar 

  22. Kuo, T.T., Zavaleta Rojas, H., Ohno-Machado, L.: Comparison of blockchain platforms: a systematic review and healthcare examples. J. Am. Med. Inform. Assoc. 26(5), 462–478 (2019)

    Article  Google Scholar 

  23. Olakanmi, O.O., Dada, A.: An efficient privacy-preserving approach for secure verifiable outsourced computing on untrusted platforms. Int. J. Cloud Appl. Comput. (IJCAC) 9(2), 79–98 (2019)

    Google Scholar 

  24. Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallun, P., Peacock, A.: Blockchain technology in the energy sector: a systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 100, 143–174 (2019)

    Article  Google Scholar 

  25. Udokwu, C., Kormiltsyn, A., Thangalimodzi, K., Norta, A.: The state of the art for blockchain-enabled smart-contract applications in the organization. In: 2018 Ivannikov Ispras Open Conference (ISPRAS), pp. 137–144. IEEE, Moscow (2018)

  26. Becker, G.: Merkle Signature Schemes, Merkle Trees and Their Cryptanalysis. Ruhr-University, Bochum (2008)

    Google Scholar 

  27. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, Princeton (2016)

    MATH  Google Scholar 

  28. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  29. Saberi, S., Kouhizadeh, M., Sarkis, J., Shen, L.: Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 57(7), 2117–2135 (2019)

    Article  Google Scholar 

  30. Haferkorn, M., Quintana Diaz, J.M.: Seasonality and interconnectivity within cryptocurrencies—an analysis on the basis of Bitcoin, Litecoin and Namecoin. In: Lugmayr, A., (ed.) Enterprise Applications and Services in the Finance Industry. FinanceCom 2014. Lecture Notes in Business Information Processing, vol. 217, pp. 106–120. Springer, Cham (2015)

  31. Cong, L.W., He, Z.: Blockchain disruption and smart contracts. Rev. Financ. Stud. 32(5), 1754–1797 (2019)

    Article  Google Scholar 

  32. Bhowmik, D., Feng, T.: The multimedia blockchain: a distributed and tamper-proof media transaction framework. In: International Conference on Digital Signal Processing DSP, pp 1–5. IEEE, London (2017)

  33. Dupont, Q.: Blockchain identities: notational technologies for control and management of abstracted entities. Metaphilosophy 48(5), 634–653 (2017)

    Article  Google Scholar 

  34. Jamthagen, C., Hell, M.: Blockchain-based publishing layer for the keyless signing infrastructure. In: Proceedings 13th IEEE International Conference on Ubiquitous Intelligence and Computing, pp. 374–381. IEEE, Tolouse (2016)

  35. Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky, L.: Ensuring data integrity using blockchain technology. In: Conference of Open Innovation Association, FRUCT, pp. 534–539. IEEE, Jyvaskyla (2017)

  36. Swan, M.: Blockchain Blueprint for a New Economy. O’Reilly Media Inc, Newton (2015)

    Google Scholar 

  37. Akins, B.W., Chapman, J.L., Gordon, J.M.: A whole new world: income tax considerations of the Bitcoin economy. Pitt. Tax Rev. 12, 25 (2014)

    Google Scholar 

  38. Chiang, C.W., Betanzos, E., Savage, S.: Blockchain for trustful collaborations between immigrants and governments. In: 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–6. ACM Press, Montréal (2018)

  39. Lemieux, V.L.: Trusting records: is blockchain technology the answer? Records Manag. J. 26(2), 110–139 (2016)

    Article  MathSciNet  Google Scholar 

  40. Leiding, B., Norta, A.: Mapping requirements specifications into a formalized blockchain-enabled authentication protocol for secured personal identity assurance. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) Future Data and Security Engineering. FDSE 2017. Lecture Notes in Computer Science, 10646, pp. 181–196. Springer, Cham (2017)

  41. Lee, J.-H.: BIDaaS: blockchain based ID as a service. IEEE Access 6, 2274–2278 (2018)

    Article  Google Scholar 

  42. Bdiwi, R., De Runz, C., Faiz, S., Cherif, A.A.: Towards a new ubiquitous learning environment based on blockchain technology. In: 17th International Conference on Advanced Learning Technologies, ICALT 2017, pp. 101–102. IEEE, Timisoara (2017)

  43. Sharples, M., Domingue, J.: The blockchain and kudos: a distributed system for educational record, reputation and reward. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) Adaptive and Adaptable Learning. EC-TEL 2016. Lecture Notes in Computer Science 9891, pp. 490–496. Springer, Cham (2016)

  44. Turkanović, M., Holbl, M., Košič, K., Heričko, M., Kamišalić, A.: EduCTX: a blockchain-based higher education credit platform. IEEE Access 6, 5112–5127 (2018)

    Article  Google Scholar 

  45. Carboni, D.: Feedback based reputation on top of the Bitcoin Blockchain. Cornell University. https://arxiv.org/abs/1502.01504 (2015). Accessed 8 September 2019

  46. Dennis, R., Owen, G.: Rep on the block: a next generation reputation system based on the blockchain. In: 10th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 131–138. IEEE, London (2015)

  47. Zhang, J.: Walks trajectory tracking of shared information based on consortium blockchain. Revista de la Facultad de Ingenieria 31(12), 8–17 (2016)

    Google Scholar 

  48. Jin, T., Zhang, X., Liu, Y., Lei, K.: BlockNDN: a bitcoin blockchain decentralized system over named data networking. In: International Conference on Ubiquitous and Future Networks (ICUFN), pp. 75–80. IEEE, Milan (2017)

  49. Sutton, A., Samavi, R.: Blockchain enabled privacy audit logs. In: d'Amato C. et al. (eds.) The Semantic Web—ISWC 2017. ISWC 2017. Lecture Notes in Computer Science 10587, pp. 645–660. Springer, Cham (2017)

  50. Neisse, R., Steri, G., Fovino, I.N.: A blockchain-based approach for data accountability and provenance tracking. In: 12th International Conference on Availability, Reliability and Security, pp. 1–10. ACM, Reggio Calabria (2017)

  51. Li, H., Fan, K., Yang, Y., Ren, Y., Wang, S.: MedBlock: efficient and secure medical data sharing via blockchain. J. Med. Syst. 42(8), 1–11 (2018)

    Article  Google Scholar 

  52. Mikula, T., Jacobsen, R.H.: Identity and access management with blockchain in electronic healthcare records. In: 21st Euromicro Conference on Digital System Design (DSD 2018), pp. 699–706. IEEE, Prague (2018)

  53. Vora, J., Nayyar, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S., Rodrigues, J.J.: BHEEM: a blockchain-based framework for securing electronic health records. In: IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE, Abu Dhabi (2018)

  54. Sun, Y., Zhang, R., Wang, X., Gao, K., Liu, L.: A decentralizing attribute-based signature for healthcare blockchain. In: 27th Int. Conf. Comput. Commun. Networks, pp. 1–9. IEEE, Zhejiang Sheng (2018)

  55. Ramani, V., Kumar, T., Braeken, A., Liyanage, M., Ylianttila, M.: Secure and efficient data accessibility in blockchain based healthcare systems. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 206–212. IEEE, Abu Dhabi (2018)

  56. Magyar, G.: Blockchain: solving the privacy and research availability tradeoff for EHR data: a new disruptive technology in health data management. In: 30th Neumann Colloquium (NC), pp.135–140. IEEE, Budapest (2017)

  57. Zhang, P., White, J., Schmidt, D.C., Lenz, G., Rosenbloom, S.T.: FHIRChain: applying blockchain to securely and scalably share clinical data. Comput. Struct. Biotechnol. J. 16, 267–278 (2018)

    Article  Google Scholar 

  58. Badr, S., Gomaa, I., Abd-elrahman, E.: Multi-tier blockchain framework for IoT-EHRs systems. Procedia Comput. Sci. 141, 159–166 (2018)

    Article  Google Scholar 

  59. Xia, Q., Sifah, E.B., Asamoah, K.O., Gao, J., Du, X., Guizani, M.: MeDShare: trust-lessmedical data sharing among cloud service providers via blockchain. IEEE Access 5, 14757–14767 (2017)

    Article  Google Scholar 

  60. Theodouli, A., Arakliotis, S., Moschou, K., Votis, K., Tzovaras, D.: On the design of a blockchain-based system to facilitate healthcare data sharing. In: 17th Int. Conf. Trust. Secur. Priv. Comput. Commun., pp. 1374–1379. IEEE, New York (2018)

  61. Li, H., Zhu, L., Shen, M., Gao, F., Tao, X., Liu, S.: Blockchain-based data preservation system for medical data. J. Med. Syst. 42(8), 1–13 (2018)

    Article  Google Scholar 

  62. Rouhani, S., Butterworth, L., Simmons, A.D., Humphery, D.G., Deters, R.: MediChain TM: a secure decentralized medical data asset management system. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1533–1538. IEEE, Halifax (2018)

  63. Uddin, M.A., Stranieri, A., Gondal, I., Balasubramanian, V.: Continuous patient monitoring with a patient centric agent: a block architecture. IEEE Access 6, 32700–32726 (2018)

    Article  Google Scholar 

  64. Griggs, K.N., Ossipova, O., Kohlios, C.P., Baccarini, A.N., Howson, E.A., Hayajneh, T.: Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. J. Med. Syst. 42(7), 1–7 (2018)

    Article  Google Scholar 

  65. Dwivedi, A.D., Srivastava, G., Dhar, S., Singh, R.: A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 19(2), 1–17 (2019)

    Article  Google Scholar 

  66. Nugent, T., Upton, D., Cimpoesu, M.: Improving data transparency in clinical trials using blockchain smart contracts. F1000 Res. 5, 2541 (2016)

    Article  Google Scholar 

  67. Benchoufi, M., Ravaud, P.: Blockchain technology for improving clinical research quality. Trials 18(1), 335 (2017)

    Article  Google Scholar 

  68. Benchoufi, M., Porcher, R., Ravaud, P.: Blockchain protocols in clinical trials: transparency and traceability of consent. F1000 Res. 6, 6 (2018)

    Article  Google Scholar 

  69. Rosa, M., Barraca, J.P., Rocha, N.P.: Access control for social care platforms using fast healthcare interoperability resources. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol. 932, pp. 94–104. Springer, Cham (2019)

Download references

Acknowledgements

This work was supported by Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico (SI I&DT) of the Programa Portugal 2020, through Programa Operacional Competitividade e Internacionalização and/or Programa Operacional do Centro do FEDER—Fundo Europeu de Desenvolvimento Regional, under Social Cooperation for Integrated Assisted Living (SOCIAL), Project No. 017861.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Pacheco Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, M., Barraca, J.P. & Rocha, N.P. Blockchain structures to guarantee logging integrity of a digital platform to support community-dwelling older adults. Cluster Comput 23, 1887–1898 (2020). https://doi.org/10.1007/s10586-020-03084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03084-4

Keywords