Abstract
When each task of the longest path in a task-dependent scientific workflow must meet a deadline, the path is called critical. Tasks in a critical path have priority over tasks in non-critical paths. Considering this fact that less methods have already dealt with the critical path problem for workflow scheduling in cloud, this study aims to present a critical-path based method to consider the problem based on our previous optimal workflow scheduling method, GWO-based (Grey Wolf Optimization). We applied our study to balance and imbalance scientific workflows. Our results show that considering the critical path improves the completion time of workflows while maintaining a proper level of resource cost and resource utilization. Moreover, to show the effectiveness of the current study, we compared the performance of the proposed method with non-critical-path aware algorithms, using three different indicators. The simulation demonstrates that compared to PGWO as the base method, the proposed approach achieves (1) approximately 68% improvement for makespan, (2) more accuracy in population sampling for about 70% of workflows, and (3) avoidance of the cost increases in more than 50% of workflows. Moreover, the proposed method decreases makespan approximately 3 times compared to the constrained-based approaches.










Similar content being viewed by others
References
Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 14(2), 217–264 (2016). https://doi.org/10.1007/s10723-015-9359-2
Mershad, K., Artail, H., Saghir, M.A.R., Hajj, H., Awad, M.: A study of the performance of a cloud datacenter server. IEEE Trans. Cloud Comput. 5(4), 590–603 (2017). https://doi.org/10.1109/TCC.2015.2415803
I. Sadooghi, J. H. Martin, T. Li, K. Brandstatter, K. Maheshwari, T. P. P. de Lacerda Ruivo, G. Garzoglio, S. Timm, Y. Zhao, I. Raicu, Understanding the performance and potential of cloud computing for scientific applications, IEEE Trans. Cloud Comput. 5 (2) (2017) 358–371. https://doi.org/10.1109/TCC.2015.2404821
Juve, G., Chervenak, A.L., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Future Gener. Comp. Syst. 29(3), 682–692 (2013). https://doi.org/10.1016/j.future.2012.08.015
Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002). https://doi.org/10.1109/71.993206
Son, J.H., Kim, J., Kim, M.: Extracting the workflow critical path from the extended well-formed workflow schema. J. Comput. Syst. Sci. 70(1), 86–106 (2005). https://doi.org/10.1016/j.jcss.2004.07.001
Meena, J., Kumar, M., Vardhan, M.: Cost effective genetic algorithm for workflow scheduling in cloud under deadline constraint. IEEE Access 4, 5065–5082 (2016). https://doi.org/10.1109/ACCESS.2016.2593903
Liu, L., Zhang, M., Buyya, R.., Fan, Q.: Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing, Concurrency and Computation: Pract. Exp. 29(5). https://doi.org/10.1002/cpe.3942
Khalili, A., Babamir, S.M.: Optimal scheduling workflows in cloud computing environment using pareto-based grey wolf optimizer, Concurrency and Computation. Pract. Exp. 29(11). https://doi.org/10.1002/cpe.4044
Ebadifard, F., Babamir, S.M.: Optimizing multi objective based workflow scheduling in cloud computing using black hole algorithm. In: 2017 3th International Conference on Web Research (ICWR), pp. 102–108. (2017)https://doi.org/10.1109/ICWR.2017.7959313
Chen, Z., Zhan, Z., Lin, Y., Gong, Y., Gu, T., Zhao, F., Yuan, H., Chen, X., Li, Q., Zhang, J.: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach. IEEE Trans. Cybernet. 1–15 (2018). https://doi.org/10.1109/TCYB.2018.2832640
Ebadifard, F., Doostali, S., Babamir, S.M.: A firefly-based task scheduling algorithm for the cloud computing environment: Formal verification and simulation analyses. In: 9th International Symposium on Telecommunications, IST 2018, pp. 664–669. Tehran, Iran (2018) https://doi.org/10.1109/ISTEL.2018.8661088
Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: 2012 IEEE 8th International Conference on E-Science, pp. 1–8. (2012). https://doi.org/10.1109/eScience.2012.6404430
Arabnejad, H., Barbosa, J.G.: A budget constrained scheduling algorithm for workflow applications. J. Grid Comp. 12(4), 665–679 (2014). https://doi.org/10.1007/s10723-014-9294-7
Yuan, Y., Li, X., Wang, Q., Zhu, X.: Deadline division-based heuristic for cost optimization in workflow scheduling. Inf. Sci. 179(15), 2562–2575 (2009). https://doi.org/10.1016/j.ins.2009.01.035
Jailalita, S. Singh, M. Dutta, Critical path based scheduling algorithm for workflow applications in cloud computing, in: 2016 International Conference on Advances in Computing, Communication, Automation (ICACCA) (Spring), pp. 1–6. (2016). https://doi.org/10.1109/ICACCA.2016.7578905
Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Deadline-constrained workflow scheduling algorithms for infrastructure as a service clouds. Future Gener. Comp. Syst. 29(1), 158–169 (2013). https://doi.org/10.1016/j.future.2012.05.004
Cai, Z., Li, X., Gupta, J.N.D.: Critical path-based iterative heuristic for workflow scheduling in utility and cloud computing. In: Service-Oriented Computing - 11th International Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceedings, pp. 207–221. (2013). https://doi.org/10.1007/978-3-642-45005-1_15
Wu, F., Wu, Q., Tan, Y., Li, R., Wang, W.: Pcp-b\({}^{\text{2 }}\): Partial critical path budget balanced scheduling algorithms for scientific workflow applications. Future Gener. Comp. Syst. 60, 22–34 (2016). https://doi.org/10.1016/j.future.2016.01.004
Arabnejad, V., Bubendorfer, K., Ng, B., Chard, K.: A deadline constrained critical path heuristic for cost-effectively scheduling workflows. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp. 242–250. (2015). https://doi.org/10.1109/UCC.2015.41
Arabnejad, V., Bubendorfer, K., Ng, B.: Scheduling deadline constrained scientific workflows on dynamically provisioned cloud resources. Future Gener.Comp. Syst. 75, 348–364 (2017). https://doi.org/10.1016/j.future.2017.01.002
Zheng, W., Sakellariou, R.: Budget-deadline constrained workflow planning for admission control. J. Grid Comput. 11(4), 633–651 (2013). https://doi.org/10.1007/s10723-013-9257-4
Verma, A., Kaushal, S.: Bi-criteria priority based particle swarm optimization workflow scheduling algorithm for cloud. In: 2014 Recent Advances in Engineering and Computational Sciences (RAECS), pp. 1–6., India (2014). https://doi.org/10.1109/RAECS.2014.6799614
Verma, A., Kaushal, S.: Cost-time efficient scheduling plan for executing workflows in the cloud. J. Grid Comput. 13(4), 495–506 (2015). https://doi.org/10.1007/s10723-015-9344-9
Durillo, J.J., Prodan, R.: Multi-objective workflow scheduling in amazon EC2. Clust. Comput. 17(2), 169–189 (2014). https://doi.org/10.1007/s10586-013-0325-0
Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst. 27(5), 1344–1357 (2016). https://doi.org/10.1109/TPDS.2015.2446459
Rodriguez, M.A., Buyya, R.: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014). https://doi.org/10.1109/TCC.2014.2314655
Oprescu, A., Filip, A.V., Kielmann, T.: Fast pareto front approximation for cloud instance pool optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings, pp. 1443–1444. (2015). https://doi.org/10.1145/2739482.2764720
Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in dvfs-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2016). https://doi.org/10.1007/s10723-015-9334-y
Thakur, S., Chaurasia, A.: Towards green cloud computing: Impact of carbon footprint on environment. In: 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), pp. 209–213. (2016). https://doi.org/10.1109/CONFLUENCE.2016.7508115
Jiang, J., Lin, Y., Xie, G., Fu, L., Yang, J.: Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system. J. Grid Comput. 15(4), 435–456 (2017). https://doi.org/10.1007/s10723-017-9391-5
Singh, V., Gupta, I., Jana, P.K.: An energy efficient algorithm for workflow scheduling in iaas cloud. J. Grid Comput. 1–20 (2019). https://doi.org/10.1007/s10723-019-09490-2
Mirjalili, S., Saremi, S., Mirjalili, S.M., dos Santos Coelho, L.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016). https://doi.org/10.1016/j.eswa.2015.10.039
Wang, B., Wang, C., Song, Y., Cao, J., Cui, X., Zhang, L.: A survey and taxonomy on workload scheduling and resource provisioning in hybrid clouds. Clust. Comput. 23(4), 2809–2834 (2020). https://doi.org/10.1007/s10586-020-03048-8
Iranmanesh, A., Naji, H.R.: Dchg-ts: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific workflow scheduling in cloud computing. Clust. Comput. 24, 667–681 (2021). https://doi.org/10.1007/s10586-020-03145-8
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007
Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm, Tech. rep. (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. University of Zurich, Zürich, Switzerland (1999).. (Ph.D. thesis)
Schott, J.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics (1995)
Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.H.J.: A performance analysis of EC2 cloud computing services for scientific computing. In: Cloud Computing - First International Conference, CloudComp 2009, pp. 115–131. Munich, Germany (2009) https://doi.org/10.1007/978-3-642-12636-9_9
de Smith, M.: Statistical Analysis Handbook, Winchelsea Press (2018)
Arcuri, A., Briand, L.C.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 1–10. Waikiki, Honolulu, HI, USA (2011). https://doi.org/10.1145/1985793.1985795
Masadeh, R., Alsharman, N., Sharieh, A., Mahafzah, B.A.: Task scheduling on cloud computing based on sea lion optimization algorithm. Int. J. Web Inform. Syst. 17(2), 99–116 (2021). https://doi.org/10.1108/IJWIS-11-2020-0071
Masadeh, R., Sharieh, A., Mahafzah, B.A.: Humpback whale optimization algorithm based on vocal behavior for task scheduling in cloud computing. Int. J. Adv. Sci. Technol. 13(3), 121–140 (2019)
Ziafat, H., Babamir, S.M.: A hierarchical structure for optimal resource allocation in geographically distributed clouds. Future Gener. Comp. Syst. 90, 539–568 (2019). https://doi.org/10.1016/j.future.2018.08.027
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Doostali, S., Babamir, S.M. & Eini, M. CP-PGWO: multi-objective workflow scheduling for cloud computing using critical path. Cluster Comput 24, 3607–3627 (2021). https://doi.org/10.1007/s10586-021-03351-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-021-03351-y