Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Joint wireless power transfer and task offloading in mobile edge computing: a survey

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The promising technique of Wireless Power Transfer (WPT) to end devices and sensors has gained the attention of researchers recently. Mobile edge computing (MEC) is also succeeding from Cloud Computing due to its minimum latency constraints. In MEC, smart devices offload computation intensive tasks to the MEC server which achieves low latency. However, limitations exist for smart device battery lifetime and task execution delay because of an effective decision in the offloading scenario necessitating joint WPT and MEC offloading. The joint WPT and MEC offloading decisions are based on real time application requirements, placement of Base Station (BS) with power transfer capabilities for smart devices, and offloading opportunities in the MEC. To meet the energy consumption requirement, a BS integrated with MEC server and power transfer capability transfers wireless power to end devices as an incentive and offers opportunities for offloading. Transferring wireless power to end devices effectively meets the requirement of smart devices while extending battery lifetime. This article encapsulates the state of art work in methodologies of offloading in MEC and WPT to end nodes. We consider MEC offloading techniques with WPT and real time application requirements while summarizing related studies. We formulate a taxonomy of joint WPT and offloading in MEC. We compare the state-of-the-art studies based on parameters identified from taxonomy. Finally, we provide the challenges and debate future research directions relevant to the domain of joint MEC-WPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for this article.

Notes

  1. http://engineering.electrical-equipment.org/electrical-distribution/wireless-power-transfer.html.

References

  1. Peng, K., et al.: A survey on mobile edge computing: Focusing on service adoption and provision. Wirel. Commun. Mob. Comput. (2018)

  2. Li, Z., et al.: A survey of mobile edge computing. Telecommun. Sci 34(1), 87–101 (2018)

    Google Scholar 

  3. Varghese, B., Buyya, R.: Next generation cloud computing: New trends and research directions. Futur. Gener. Comput. Syst. 79, 849–861 (2018)

    Article  Google Scholar 

  4. Patel, Y.S., Reddy, M., Misra, R.: Energy and cost trade-off for computational tasks offloading in mobile multi-tenant clouds. Clust. Comput. (2021) 1–32

  5. Chaudhry, S.A., et al.: An improved anonymous authentication scheme for distributed mobile cloud computing services. Clust. Comput. 22(1), 1595–1609 (2019)

    Article  Google Scholar 

  6. Posner, J., et al.: Federated learning in vehicular networks: opportunities and solutions. IEEE Netw. (2021)

  7. Taleb, T., et al.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)

    Article  Google Scholar 

  8. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  9. Ahmed, E., Rehmani, M.H.: Mobile Edge Computing: Opportunities, Solutions, and Challenges. Elsevier, Amsterdam (2017)

    Google Scholar 

  10. Jararweh, Y.: Enabling efficient and secure energy cloud using edge computing and 5G. J. Parallel Distrib. Comput. 145, 42–49 (2020)

    Article  Google Scholar 

  11. Al Ridhawi, I., et al.: Enabling intelligent IoCV services at the edge for 5G networks and beyond. IEEE Trans. Intell. Transp. Syst. (2021)

  12. Zhai, D., et al.: Simultaneous wireless information and power transfer at 5G new frequencies: channel measurement and network design. IEEE J. Sel. Areas Commun. 37(1), 171–186 (2018)

    Article  Google Scholar 

  13. Mazouzi, H., Achir, N., Boussetta, K.: Dm2-ecop: an efficient computation offloading policy for multi-user multi-cloudlet mobile edge computing environment. ACM Trans. Internet Technology (TOIT) 19(2), 1–24 (2019)

    Article  Google Scholar 

  14. Mao, Y., Zhang, J., Letaief, K.B.: Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. In: 2017 IEEE wireless communications and networking conference (WCNC). IEEE. (2017)

  15. Bi, S., Zeng, Y., Zhang, R.: Wireless powered communication networks: an overview. IEEE Wirel. Commun. 23(2), 10–18 (2016)

    Article  Google Scholar 

  16. Feng, J., et al.: Computation offloading and resource allocation for wireless powered mobile edge computing with latency constraint. IEEE Wirel. Commun. Lett. 8(5), 1320–1323 (2019)

    Article  Google Scholar 

  17. Wang, F., et al.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2017)

    Article  Google Scholar 

  18. Rana, M.M., et al.: Internet of Things infrastructure for wireless power transfer systems. IEEE Access 6, 19295–19303 (2018)

    Article  Google Scholar 

  19. Rana, M.M., Xiang, W.: IoT communications network for wireless power transfer system state estimation and stabilization. IEEE Internet Things J. 5(5), 4142–4150 (2018)

    Article  Google Scholar 

  20. Choi, K.W., et al.: Distributed wireless power transfer system for Internet of Things devices. IEEE Internet Things J. 5(4), 2657–2671 (2018)

    Article  Google Scholar 

  21. Lhazmir, S., et al.: A decision-making analysis in UAV-enabled wireless power transfer for IoT networks. Simul. Modell. Pract. Theory 103, 102102 (2020)

    Article  Google Scholar 

  22. Li, L., et al.: Jointly optimize the residual energy of multiple mobile devices in the MEC–WPT system. Future Internet 12(12), 233 (2020)

    Article  Google Scholar 

  23. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 107496 (2020)

  24. Mao, Y., et al.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  25. Shan, X., et al.: A survey on computation offloading for mobile edge computing information. In: 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing,(HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). IEEE (2018)

  26. uz Zaman, S.K., Jehangiri, A.I., Maqsood, T., Ahmad, Z., Umar, A.I., Shuja, J., Alanazi, E., Alasmary, W.: Mobility-aware computational offloading in mobile edge networks: a survey. Clust. Comput (2021). https://doi.org/10.1007/s10586-021-03268-6

    Article  Google Scholar 

  27. Zeng, Y., Clerckx, B., Zhang, R.: Communications and signals design for wireless power transmission. IEEE Trans. Commun. 65(5), 2264–2290 (2017)

    Article  Google Scholar 

  28. Clerckx, B.: Communications and Signals Design for Wireless Power Transmission

  29. Wang, W., et al.: Optimization of transmitting coils based on uniform magnetic field for unmanned aerial vehicle wireless charging system. IEEE Trans. Magn. (2021)

  30. Lidow, A., et al.: GaN Transistors for Efficient Power Conversion. Wiley, New York (2019)

    Book  Google Scholar 

  31. Duroc, Y., Vera, G.A.: Towards autonomous wireless sensors: RFID and energy harvesting solutions. In: Internet of Things. Springer, pp. 233–255 (2014)

  32. Zhang, Q., et al.: Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J. 5(5), 3853–3864 (2018)

    Article  Google Scholar 

  33. Huo, Y., et al.: Distributed and multilayer UAV networks for next-generation wireless communication and power transfer: a feasibility study. IEEE Internet Things J. 6(4), 7103–7115 (2019)

    Article  Google Scholar 

  34. Lin, H., et al.: A survey on computation offloading modeling for edge computing. J. Netw. Comput. Appl. 102781 (2020)

  35. Ren, J., et al.: An edge-computing based architecture for mobile augmented reality. IEEE Netw. 33(4), 162–169 (2019)

    Article  Google Scholar 

  36. Dai, H., et al.: A scheduling algorithm for autonomous driving tasks on mobile edge computing servers. J. Syst. Architect. 94, 14–23 (2019)

    Article  Google Scholar 

  37. Hu, X., Wong, K.-K., Yang, K.: Wireless powered cooperation-assisted mobile edge computing. IEEE Trans. Wirel. Commun. 17(4), 2375–2388 (2018)

    Article  Google Scholar 

  38. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  39. Ahmed, E., Ahmed, A., Yaqoob, I., Shuja, J., Gani, A., Imran, M., Shoaib, M.: Bringing computation closer toward the user network: Is edge computing the solution? IEEE Commun. Mag. 55(11), 138–144 (2015)

    Article  Google Scholar 

  40. Yu, Y., Zhang, J., Letaief, K.B.: Joint subcarrier and CPU time allocation for mobile edge computing. In: 2016 IEEE Global Communications Conference (GLOBECOM). IEEE (2016)

  41. Mao, Y., et al.: Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems. IEEE Trans. Wirel. Commun. 16(9), 5994–6009 (2017)

    Article  Google Scholar 

  42. Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust. Comput. 1–29 (2021)

  43. Zhou, S., Jadoon, W., Shuja, J.: Machine learning-based offloading strategy for lightweight user mobile edge computing tasks. Complexity (2021)

  44. Wang, S., et al.: A survey on mobile edge networks: convergence of computing, caching and communications. Ieee Access 5, 6757–6779 (2017)

    Article  Google Scholar 

  45. La, H.J. and S.D. Kim. A taxonomy of offloading in mobile cloud computing. in 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications. 2014. IEEE.

  46. Yu, S., Wang, X., Langar, R.: Computation offloading for mobile edge computing: a deep learning approach. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE (2017)

  47. Son, Y., Lee, Y.: Offloading method for efficient use of local computational resources in mobile location-based services using clouds. Mob. Inf. Syst. (2017)

  48. Chen, L., Xu, J., Zhou, S.: Computation peer offloading in mobile edge computing with energy budgets. In: GLOBECOM 2017–2017 IEEE Global Communications Conference. IEEE. (2017)

  49. Shuja, J., Bilal, K., Alasmary, W., Sinky, H., Alanazi, E.: Applying machine learning techniques for caching in next-generation edge networks: a comprehensive survey. J. Netw. Comput. Appl. 181, 103005 (2021). https://doi.org/10.1016/j.jnca.2021.103005

    Article  Google Scholar 

  50. Ren, J., et al.: A survey on end-edge-cloud orchestrated network computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudlet. ACM Comput. Surv. 52(6), 1–36 (2019)

    Article  Google Scholar 

  51. Jošilo, S., Dán, G.: Computation offloading scheduling for periodic tasks in mobile edge computing. IEEE/ACM Trans. Network. 28(2), 667–680 (2020)

    Article  Google Scholar 

  52. Elashri, S., Azim, A.: Energy-efficient offloading of real-time tasks using cloud computing. Clust. Comput. 1–16 (2020)

  53. Shuja, J., Gani, A., Ko, K., So, K., Mustafa, S., Madani, S.A., Khan, M.K.: SIMDOM: a framework for SIMD instruction translation and offloading in heterogeneous mobile architectures. Trans. Emerg. Telecommun. Technol. 29(4), e3174 (2018)

    Article  Google Scholar 

  54. de Sousa, A.D., Vieira, L.F., Vieira, M.A.: Modeling, analysis and simulation of wireless power transfer. In: Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications (2017)

  55. Xie, L., et al.: Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 20(4), 140–145 (2013)

    Article  Google Scholar 

  56. Muni, T.V., Pranav, A.S., Srinivas, A.A.: IoT based smart battery station using wireless power transfer technology. Int. J. Sci. Technol. Res. 9(01) (2020)

  57. Nguyen, M.T., et al.: Electromagnetic field based WPT technologies for UAVS: a comprehensive survey. Electronics 9(3), 461 (2020)

    Article  Google Scholar 

  58. Psomas, C., Krikidis, I.: Wireless powered mobile edge computing: Offloading or local computation? IEEE Commun. Lett. 24(11), 2642–2646 (2020)

    Article  Google Scholar 

  59. Lu, X., et al.: Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18(2), 1413–1452 (2015)

    Article  Google Scholar 

  60. Mou, X., et al.: Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging. IET Power Electron. 12(12), 3005–3020 (2019)

    Article  Google Scholar 

  61. Wang, Y., et al.: A view of research on wireless power transmission. In: J Phys Conf Ser. (2018)

  62. Zhou, F., et al.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018)

    Article  Google Scholar 

  63. Liu, Y., et al.: UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization. IEEE Internet Things J. 7(4), 2777–2790 (2019)

    Article  Google Scholar 

  64. Hu, X., Wong, K.-K., Zheng, Z.:. Wireless-powered mobile edge computing with cooperated UAV. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE (2019)

  65. Ji, L., Guo, S.: Energy-efficient cooperative resource allocation in wireless powered mobile edge computing. IEEE Internet Things J. 6(3), 4744–4754 (2018)

    Article  Google Scholar 

  66. Wu, D., et al.: Wireless powered user cooperative computation in mobile edge computing systems. In: 2018 IEEE Globecom Workshops (GC Wkshps). IEEE (2018)

  67. Mao, S., et al.: Energy-efficient cooperative communication and computation for wireless powered mobile-edge computing. IEEE Syst. J. (2020)

  68. Li, B., et al.: Wireless powered mobile edge computing with NOMA and user cooperation. IEEE Trans. Veh. Technol. (2021)

  69. Mao, S., et al.: Fair energy-efficient scheduling in wireless powered full-duplex mobile-edge computing systems. In: GLOBECOM 2017–2017 IEEE Global Communications Conference. IEEE (2017)

  70. Liu, B., et al.: Wireless powered cognitive-based mobile edge computing with imperfect spectrum sensing. IEEE Access 7, 80431–80442 (2019)

    Article  Google Scholar 

  71. Wang, F., Xu, J., Cui, S.: Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems. IEEE Trans. Wirel. Commun. 19(4), 2443–2459 (2020)

    Article  Google Scholar 

  72. Zhu, T., et al.: Computation scheduling for wireless powered mobile edge computing networks. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE (2020)

  73. Bi, S., Zhang, Y.J.: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wirel. Commun. 17(6), 4177–4190 (2018)

    Article  Google Scholar 

  74. Huang, L., Bi, S., Zhang, Y.-J.A.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)

    Article  Google Scholar 

  75. Zeng, M., et al.: Computation rate maximization for wireless powered mobile edge computing with NOMA. In: 2019 IEEE 20th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE (2019)

  76. Wang, F.: Computation rate maximization for wireless powered mobile edge computing. In: 2017 23rd Asia-Pacific Conference on Communications (APCC). IEEE (2017)

  77. Al-Shuwaili, A., Simeone, O.: Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wirel. Commun. Lett. 6(3), 398–401 (2017)

    Article  Google Scholar 

  78. Varga, D.,Laki, S.: Scalable surface reconstruction in the mobile edge. In: Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos. (2018)

  79. Samanta, A., Li, Y.: Poster: latency-oblivious incentive service offloading in mobile edge computing. ACM/IEEE SEC (2018)

  80. Othman, M., Khan, A.N., Shuja, J., Mustafa, S.: Computation offloading cost estimation in mobile cloud application models. Wirel. Pers. Commun. 97(3), 4897–4920 (2017)

    Article  Google Scholar 

  81. Jia, M., Liang, W.: Delay-sensitive multiplayer augmented reality game planning in mobile edge computing. In: Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (2018)

  82. Madhja, A., Nikoletseas, S., Voudouris, A.A.: Mobility-aware, adaptive algorithms for wireless power transfer in ad hoc networks. In: International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics. Springer (2018)

  83. Angelopoulos, C.M., et al.: Traversal strategies for wireless power transfer in mobile ad-hoc networks. In: Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. (2015)

  84. Ahmad, A., et al.: A state of the Art review on Wireless Power Transfer a step towards sustainable mobility. In: 2017 14th IEEE India Council International Conference (INDICON). IEEE (2017)

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

All author contributed equally.

Corresponding authors

Correspondence to Junaid Shuja or Sadia Din.

Ethics declarations

Ethical approval

This is the authors own working not submitted anywhere else.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, E., Shuja, J., uz Zaman, S.K. et al. Joint wireless power transfer and task offloading in mobile edge computing: a survey. Cluster Comput 25, 2429–2448 (2022). https://doi.org/10.1007/s10586-021-03376-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03376-3

Keywords