Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Integration of blockchain and collaborative intrusion detection for secure data transactions in industrial IoT: a survey

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The advent of the Industrial Internet of Things (IIoT) integrates all manners of computing technologies, from tiny actuators to process-intensive servers. The distributed network of IoT devices relies on centralized architecture to compensate for their lack of resources. Within this complex network, it is crucial to ensure the security and privacy of data in the IIoT systems as they involve real-time functions that manage people’s movement and industrial materials like chemicals, radio-active goods, and large equipment. Intrusion Detection Systems (IDS) have been widely used to detect and thwart cyber-attacks on such systems. However, these are inefficient for the multi-layered IIoT networks which include heterogeneous protocol standards and topologies. With the need for a novel security method, the integration of collaborative IDS (CIDS) and blockchain has become a disruptive technology to ensure secure and trustable network transactions. Which detection methodology is suitable for this integration, and IIoT? Will blockchain render IIoT completely immune to cyber-attacks? In this paper, we provide a comprehensive review of the state of the art, analyze, and classify the integration approaches of CIDS and blockchain, and discuss suitable approaches for securing IIoT systems. We also categorize the major blockchain vulnerabilities with their potential losses to expose significant gaps for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Weiser, M.: The computer for the 21st century. ACM Sigmobile Mob. Comput. Commun. Rev. 3(3), 3–11 (1999). https://doi.org/10.1145/329124.329126

    Article  Google Scholar 

  2. Lu, Y.: The blockchain: State-of-the-art and research challenges. J. Indust. Inform. Integr. 15, 80–90 (2019). https://doi.org/10.1016/j.jii.2019.04.002

    Article  Google Scholar 

  3. Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Industr. Inf. 10(4), 2233–2243 (2014). https://doi.org/10.1109/TII.2014.2300753

    Article  Google Scholar 

  4. Li, Y., Hou, M., Liu, H., Liu, Y.: Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things. Inf. Technol. Manag. 13(4), 205–216 (2012). https://doi.org/10.1007/s10799-012-0121-1

    Article  Google Scholar 

  5. Aron, N., Yemane, B., Mikael, T., Salem, R. Belqasmi, F.: A WUSN-based smart system for water flow control. In: IEEE 2020 12th Annual Undergraduate Research Conference on Applied Computing. URC 2020, (2020) doi: https://doi.org/10.1109/URC49805.2020.9099183

  6. Sengupta, J., Ruj, S., Bit, S.D.: A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT”. J. Netw. Comput. Appl. (2020). https://doi.org/10.1016/j.jnca.2019.102481

    Article  Google Scholar 

  7. Zarei, M., Mohammadian, A., Ghasemi, R.: Internet of things in industries: a survey for sustainable development. Int. J. Innovat. Sustain. Dev. 10(4), 419–442 (2016). https://doi.org/10.1504/IJISD.2016.079586

    Article  Google Scholar 

  8. Vitturi, S., Zunino, C., Sauter, T.: Industrial communication systems and their future challenges: next-generation ethernet, IIoT, and 5G. Proc. IEEE 107(6), 944–961 (2019). https://doi.org/10.1109/JPROC.2019.2913443

    Article  Google Scholar 

  9. Song, Y., Liu, T., Wei, T., Wang, X., Tao, Z., Chen, M.: FDA3: federated defense against adversarial attacks for cloud-based IIoT applications. IEEE Trans. Ind. Inform. 4, 1–1 (2020). https://doi.org/10.1109/tii.2020.3005969

    Article  Google Scholar 

  10. Saleem, Y., Salim, F., Rehmani, M.H.: Resource management in mobile sink based wireless sensor networks through cloud computing. Model. Optim. Sci. Technol. 10, 15 (2014)

    Google Scholar 

  11. Mell, P., Grance, T.: The NIST-National Institute of Standars and Technology- definition of cloud computing. NIST Special Publication 800-145, (2011)

  12. Trabelsi, Z., Hayawi, K., Al Braiki, A., Mathew, S.S.: Network attacks and defenses. (2012)

  13. Mosenia, A., Jha, N.K.: A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 5(4), 586–602 (2017). https://doi.org/10.1109/TETC.2016.2606384

    Article  Google Scholar 

  14. Hassanzadeh, A., Modi, S., Mulchandani, S.: Towards effective security control assignment in the Industrial Internet of Things. In: IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, pp. 795–800, (2015) doi: https://doi.org/10.1109/WF-IoT.2015.7389155

  15. K. Hayawi, P., Ho, H., Mathew, S.S., Peng, L.: Securing the internet of things: a worst-case analysis of trade-off between query-anonymity and communication-cost. In: Proceedings—International Conference on Advanced Information Networking and Applications, AINA, pp. 939–946 (2017). doi: https://doi.org/10.1109/AINA.2017.76

  16. Zhou, L., Guo, H.: Anomaly detection methods for IIoT networks. In: Proceedings of the 2018 IEEE International conference on service operations and logistics, and informatics, SOLI 2018, pp. 214–219, (2018). doi: https://doi.org/10.1109/SOLI.2018.8476769.

  17. Wu, Y.S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system (CIDS): A framework for accurate and efficient IDS. In: Proceedings—annual computer security applications conference, ACSAC, 2003, vol. 2003, pp. 234–244, doi: https://doi.org/10.1109/CSAC.2003.1254328

  18. Aldweesh, A., Derhab, A., Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Knowledge-Based Syst. (2020). https://doi.org/10.1016/j.knosys.2019.105124

    Article  Google Scholar 

  19. Yu, X., Guo, H., A survey on IIoT security. In: Proceedings—2019 IEEE VTS Asia pacific wireless communications symposium, APWCS 2019, (2019), doi: https://doi.org/10.1109/VTS-APWCS.2019.8851679

  20. Dawit, N.A., Mathew, S.S., Hayawi, K.: Suitability of blockchain for collaborative intrusion detection systems. In: Proceedings—2020 12th Annual Undergraduate Research Conference on Applied Computing, URC 2020, doi: https://doi.org/10.1109/URC49805.2020.9099189

  21. Makhdoom, I., Hayawi, K., Kaosar, M., Mathew, S.S., Ho, P.H.: D2Gen: a decentralized device genome based integrity verification mechanism for collaborative intrusion detection systems. IEEE Access 9, 137260–137280 (2021). https://doi.org/10.1109/ACCESS.2021.3117938

    Article  Google Scholar 

  22. Zhang, K., Zhu, Y., Maharjan, S., Zhang, Y.: Edge intelligence and blockchain empowered 5G beyond for the industrial internet of things. IEEE Netw. 33(5), 12–19 (2019). https://doi.org/10.1109/MNET.001.1800526

    Article  Google Scholar 

  23. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 16(6), 4177–4186 (2020). https://doi.org/10.1109/TII.2019.2942190

    Article  Google Scholar 

  24. Liu, C.H., Lin, Q., Wen, S.: Blockchain-enabled data collection and sharing for industrial iot with deep reinforcement learning. IEEE Trans. Ind. Inform. 15(6), 3516–3526 (2019). https://doi.org/10.1109/TII.2018.2890203

    Article  Google Scholar 

  25. Zyskind, G. Nathan, O., Pentland, A.S.: Decentralizing privacy: using blockchain to protect personal data. In: Proceedings—2015 IEEE security and privacy workshops, SPW 2015, (2015). pp. 180–184, doi: https://doi.org/10.1109/SPW.2015.27

  26. Wan, J., Li, J., Imran, M., Li, D.: A blockchain-based solution for enhancing security and privacy in smart factory. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/TII.2019.2894573

    Article  Google Scholar 

  27. Li, W., Tug, S., Meng, W., Wang, Y.: Designing collaborative blockchained signature-based intrusion detection in IoT environments. Futur. Gener. Comput. Syst. 96, 481–489 (2019). https://doi.org/10.1016/j.future.2019.02.064

    Article  Google Scholar 

  28. Golomb, T., Mirsky, Y., Elovici, Y.: CIoTA: collaborative anomaly detection via blockchain. (2018), doi: https://doi.org/10.14722/diss.2018.23003

  29. Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997). https://doi.org/10.5210/fm.v2i9.548

    Article  Google Scholar 

  30. Luu, L., et al.: Are blockchains immune to all malicious attacks? Future Generat. Comput. Syst. 49(1), 25 (2018). https://doi.org/10.1186/s40854-016-0046-5

    Article  MathSciNet  Google Scholar 

  31. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018). https://doi.org/10.1016/j.future.2017.11.022

    Article  Google Scholar 

  32. Taylor, P.J., Dargahi, T., Dehghantanha, A., Parizi, R.M., Choo, K.K.R.: A systematic literature review of blockchain cyber security. Digit. Commun. Netw. 6(2), 147–156 (2020). https://doi.org/10.1016/J.DCAN.2019.01.005

    Article  Google Scholar 

  33. Meng, W., Tischhauser, E.W., Wang, Q., Wang, Y., Han, J.: When intrusion detection meets blockchain technology: a review. IEEE Access 6, 10179–10188 (2018). https://doi.org/10.1109/ACCESS.2018.2799854

    Article  Google Scholar 

  34. Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in Blockchain. J. Inf. Process. Syst. (2018). https://doi.org/10.3745/JIPS.01.0024

    Article  Google Scholar 

  35. Wright, C.S.: Bitcoin: a peer-to-peer electronic cash system. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3440802

    Article  Google Scholar 

  36. Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., Qijun, C.: A review on consensus algorithm of blockchain. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, vol. 2017, pp. 2567–2572, doi: https://doi.org/10.1109/SMC.2017.8123011

  37. Wang, H., Zheng, Z., Xie, S., Dai, H.N., Chen, X.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352 (2018). https://doi.org/10.1504/ijwgs.2018.10016848

    Article  Google Scholar 

  38. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001

    Article  MathSciNet  MATH  Google Scholar 

  39. Buterin, V. et al. Combining GHOST and Casper. arxiv.org, 2020, [Online]. Available: http://arxiv.org/abs/2003.03052.

  40. Saleh, F.: Blockchain without waste: proof-of-stake. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3183935

    Article  Google Scholar 

  41. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, pp. 557–564, (2017) doi: https://doi.org/10.1109/BigDataCongress.2017.85.

  42. Larimer, D.: Delegated proof-of-stake consensus. (2018)

  43. Corso, A.: Performance analysis of proof-of-elapsed-time (poet) consensus in the sawtooth blockchain framework. University of Oregon, (2019).

  44. Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in Blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018). https://doi.org/10.3745/JIPS.01.0024

    Article  Google Scholar 

  45. Sukhwani, H., Martínez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric). In: Proceedings of the IEEE symposium on reliable distributed systems, vol. 2017, pp. 253–255, doi: https://doi.org/10.1109/SRDS.2017.36

  46. Androulaki E. et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the 13th EuroSys Conference, EuroSys 2018, vol. 2018 (2018) doi: https://doi.org/10.1145/3190508.3190538

  47. Blockgeeks.: What is hyperledger? The most comprehensive video ever!. www.https://blockgeeks.com/guides, (2018)

  48. Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., Hierons, R.: Smart contracts vulnerabilities: a call for blockchain software engineering?. In: 2018 IEEE 1st International Workshop on Blockchain Oriented Software Engineering, IWBOSE 2018 - Proceedings, vol. 2018 pp. 19–25, (2018) doi: https://doi.org/10.1109/IWBOSE.2018.8327567

  49. Wang S, Ouyang L, Yuan Y, Ni X, Han X, Wang FY (2019) Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man, Cybern. Syst. 49(11), 2266–2277

    Article  Google Scholar 

  50. Caldarelli, G.: Understanding the blockchain oracle problem: a call for action. Information (Switzerland) 11(11), 1–19 (2020). https://doi.org/10.3390/info11110509

    Article  Google Scholar 

  51. Homoliak, I., Venugopalan, S., Hum, Q., Reijsbergen, D., Schumi, R., Szalachowski, P.: The security reference architecture for Blockchains: towards a standardized model for studying vulnerabilities, threats, and defenses. (2019)

  52. Praitheeshan, P., Pan, L., Yu, J., Liu, J., Doss, R., Security analysis methods on ethereum smart contract vulnerabilities: a survey. (2019)

  53. Ferrag, M.A., Derdour, M., Mukherjee, M., Derhab, A., Maglaras, L., Janicke, H.: Blockchain technologies for the internet of things: research issues and challenges. IEEE Internet Things J. 6(2), 2188–2204 (2019). https://doi.org/10.1109/JIOT.2018.2882794

    Article  Google Scholar 

  54. Mayer, H.: ECDSA security in bitcoin and ethereum: a research survey. Blog.Coinfabrik, pp. 1–10, (2016)

  55. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies. In: Proceedings—IEEE Symposium on Security and Privacy, pp. 375–392, (2017). doi: https://doi.org/10.1109/SP.2017.29

  56. Sayeed, S., Marco-Gisbert, H.: Assessing blockchain consensus and security mechanisms against the 51% attack. Appl. Sci. 9(9), 1788 (2019). https://doi.org/10.3390/app9091788

    Article  Google Scholar 

  57. Tosh, D.K., Shetty, S., Liang, X., Kamhoua, C.A., Kwiat, K.A., Njilla, L.: Security implications of Blockchain cloud with analysis of block withholding attack. In: Proceedings—2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, pp. 458–467, (2017). doi: https://doi.org/10.1109/CCGRID.2017.111

  58. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Futur. Gener. Comput. Syst. 107, 841–853 (2020). https://doi.org/10.1016/j.future.2017.08.020

    Article  Google Scholar 

  59. Ye, C., Li, G., Cai, H., Gu, Y., Fukuda, A.: Analysis of security in blockchain: Case study in 51%-attack detecting. In Proceedings-2018 5th International Conference on Dependable Systems and Their Applications, DSA 2018, pp. 15–24, (2018). doi: https://doi.org/10.1109/DSA.2018.00015

  60. Underwood, S.: Blockchain beyond bitcoin. Commun. ACM 59(11), 15–17 (2016). https://doi.org/10.1145/2994581

    Article  Google Scholar 

  61. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In: Proceedings of the 24th USENIX Security Symposium, pp. 129–144, (2015)

  62. Kurose, J.F., Ross, K.W.: Computer networking: a top-down approach featuring the internet, 4th ed. (2008)

  63. Del Castillo, M.: The DAO attacked: code issue leads to $60 million ether theft. CoinDesk, (2016)

  64. Signorini, M., Pontecorvi, M., Kanoun, W., Di Pietro, R.: BAD: Blockchain anomaly detection. (2018)

  65. Alharby, M., Aldweesh, A., Van Moorsel, A.: Blockchain-based smart contracts: a systematic mapping study of academic research. In: International Conference on Cloud Computing, Big Data and Blockchain, ICCBB 2018, (2018) doi: https://doi.org/10.1109/ICCBB.2018.8756390

  66. Musch, M., Wressnegger, C., Johns, V., Rieck, K., Web-based Cryptojacking in the Wild. (2018)

  67. Boireau, O.: Securing the blockchain against hackers. Netw. Secur. 2018(1), 8–11 (2018). https://doi.org/10.1016/S1353-4858(18)30006-0

    Article  Google Scholar 

  68. Luu, L., Chu, D.H. Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the ACM Conference on Computer and Communications Security, vol. 24–pp. 254–269 (2016) doi: https://doi.org/10.1145/2976749.2978309

  69. Luu, L., Velner, Y., Teutsch, J., Saxena, P., SmartPool: practical decentralized pooled mining. In: Proceedings of the 26th USENIX Security Symposium, pp. 1409–1426 (2017)

  70. Liao, H.J., Richard Lin, C.H., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013). https://doi.org/10.1016/j.jnca.2012.09.004

    Article  Google Scholar 

  71. Mukherjee, B., Heberlein, L., Levitt, K.N.: Network intrusion detection. IEEE Netw. 8(3), 26–41 (2002). https://doi.org/10.1109/65.283931

    Article  Google Scholar 

  72. Yeung, D.Y., Ding, Y.: Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit. 36(1), 229–243 (2003). https://doi.org/10.1016/S0031-3203(02)00026-2

    Article  MATH  Google Scholar 

  73. Alrawashdeh, H., Purdy, C.: Toward an online anomaly intrusion detection system based on deep learning. In: Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, 2017, doi: https://doi.org/10.1109/ICMLA.2016.167

  74. Berthier, P., Sanders, W.H., Specification-based intrusion detection for advanced metering infrastructures. In: Proceedings of IEEE Pacific Rim International Symposium on Dependable Computing, PRDC, pp. 184–193, (2011) doi: https://doi.org/10.1109/PRDC.2011.30

  75. Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and collaborative intrusion detection. Comput. Secur. 29(1), 124–140 (2010). https://doi.org/10.1016/j.cose.2009.06.008

    Article  Google Scholar 

  76. Kim,S., Kim, B., Kim, H.J.: Intrusion detection and mitigation system using blockchain analysis for bitcoin exchange. In: ACM International Conference Proceeding Series, pp. 40–44, (2018) doi: https://doi.org/10.1145/3291064.3291075

  77. Meng, W., Li, W., Zhu, L.: Enhancing medical smartphone networks via Blockchain-Based trust management against insider attacks. IEEE Trans. Eng. Manag. (2019). https://doi.org/10.1109/TEM.2019.2921736

    Article  Google Scholar 

  78. Hu, B., Zhou, C., Tian, Y.-C., Hu, X., Junping, X.: Decentralized consensus decision-making for cybersecurity protection in multimicrogrid systems. In: Systems, Man, and Cybernetics., pp. 1–12, (2020), doi: https://doi.org/10.1109/tsmc.2020.3019272

  79. Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 19(5), 653–659 (2017). https://doi.org/10.6633/IJNS.201709.19(5).01

    Article  Google Scholar 

  80. Signorini, M., Pontecorvi, M., Kanoun, W., Di Pietro, R.: Advise: anomaly detection tool for blockchain systems. In: Proceedings - 2018 IEEE World Congress on Services, SERVICES 2018, pp. 67–68, (2018) doi: https://doi.org/10.1109/SERVICES.2018.00046

  81. Hubballi, N., Suryanarayanan, V.: False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput. Commun. 49, 1–17 (2014). https://doi.org/10.1016/j.comcom.2014.04.012

    Article  Google Scholar 

  82. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. (2018). https://doi.org/10.1109/TETCI.2017.2772792

    Article  Google Scholar 

  83. Yin, C., Zhu, Y., Fei, J., He, X.: A Deep learning approach for intrusion detection using recurrent neural networks. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2762418

    Article  Google Scholar 

  84. Niyaz, Q., Sun, W., Javaid, A.Y., Alam, M.: A deep learning approach for network intrusion detection system. In: EAI International Conference on Bio-inspired Information and Communications Technologies (BICT), (2015). doi: https://doi.org/10.4108/eai.3-12-2015.2262516

  85. Van, N.T., Thinh, T.N., Sach, L.T., An anomaly-based network intrusion detection system using Deep learning. In: Proceedings - 2017 international conference on system science and engineering, ICSSE 2017, (2017). doi: https://doi.org/10.1109/ICSSE.2017.8030867.

  86. Xin, Y., et al.: Machine learning and deep learning methods for cybersecurity. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2836950

    Article  Google Scholar 

  87. Otoum, S., Kantarci, B., Mouftah, H.T.: On the feasibility of deep learning in sensor network intrusion detection. IEEE Netw. Lett. (2019). https://doi.org/10.1109/lnet.2019.2901792

    Article  Google Scholar 

  88. Thamilarasu, G., Chawla, S.: Towards deep-learning-driven intrusion detection for the internet of things. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19091977

    Article  Google Scholar 

  89. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2782159

    Article  Google Scholar 

  90. Zhang, J., Li, F., Zhang, H., Li, R., Li, Y.: Intrusion detection system using deep learning for in-vehicle security. Ad Hoc Netw. (2019). https://doi.org/10.1016/j.adhoc.2019.101974

    Article  Google Scholar 

  91. Abusitta, A., Bellaiche, M., Dagenais, M., Halabi, T.: A deep learning approach for proactive multi-cloud cooperative intrusion detection system. Futur. Gener. Comput. Syst. (2019). https://doi.org/10.1016/j.future.2019.03.043

    Article  Google Scholar 

  92. Tug, S., Meng, W., Wang, Y.: CBSigIDS: Towards Collaborative Blockchained Signature-Based Intrusion Detection. In: Proceedings—IEEE 2018 International Congress on Cybermatics: 2018 IEEE Conferences on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, iThings/Gree, pp. 1228–1235, (2018) https://doi.org/10.1109/Cybermatics_2018.2018.00217

  93. Laufenberg, D., Li, L., Shahriar, H., Han, M.: An architecture for blockchain-enabled collaborative signature-based intrusion detection system. In: SIGITE 2019 - Proceedings of the 20th Annual Conference on Information Technology Education, p. 169, (2019). doi: https://doi.org/10.1145/3349266.3351389

  94. Uppuluri, P., Sekar, R.: Experiences with specification-based intrusion detection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 2212, pp. 172–189, (2015), doi: https://doi.org/10.1007/3-540-45474-8_11

  95. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical programs in distributed systems: a specification-based approach. In: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, (1997), pp. 175–187, doi: https://doi.org/10.1109/secpri.1997.601332

  96. Lin, H., Slagell, A., Di Martino, C., Kalbarczyk, Z., Iyer, R.K.: Adapting bro into SCADA: Building a specification-based intrusion detection system for the DNP3 protocol. In: ACM International Conference Proceeding Series, p. 1, (2013) doi: https://doi.org/10.1145/2459976.2459982

  97. Cheung, S., Skinner, K.: Using model-based intrusion detection for SCADA networks. Sci. Technol. 329(7461), 1–12 (2006)

    Google Scholar 

  98. Hadeli, H., Schierholz, R., Braendle, M., Tuduce, C.: Leveraging determinism in industrial control systems for advanced anomaly detection and reliable security configuration. In: ETFA 2009–2009 IEEE Conference on Emerging Technologies and Factory Automation, (2009), doi: https://doi.org/10.1109/ETFA.2009.5347134

  99. Gill, R., Smith, J., Clark, A.: Specification-based intrusion detection in WLANs. In: Proceedings - Annual Computer Security Applications Conference, ACSAC, pp. 141–150, (2006) doi: https://doi.org/10.1109/ACSAC.2006.48.

  100. Schultz, E.E.: A framework for understanding and predicting insider attacks. Comput. Secur. 21(6), 526–531 (2002). https://doi.org/10.1016/S0167-4048(02)01009-X

    Article  Google Scholar 

  101. Kolokotronis, N., Brotsis, S., Germanos, G., Vassilakis, C., Shiaeles, S.: On blockchain architectures for trust-based collaborative intrusion detection. In: Proceedings - 2019 IEEE World Congress on Services, SERVICES 2019, (2019), doi: https://doi.org/10.1109/SERVICES.2019.00019

  102. Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based overlay for intrusion detection. In: Proceedings - International Workshop on Database and Expert Systems Applications, DEXA, pp. 692–697, (2006). doi: https://doi.org/10.1109/DEXA.2006.21

  103. Ambili, K.N., Jose, J.: Trust based intrusion detection system to detect insider attacks in IoT systems. Lecture Notes Electr. Eng. 621, 631–638 (2020). https://doi.org/10.1007/978-981-15-1465-4_62

    Article  Google Scholar 

  104. Imran, M., Hayawi, K., Kaosar, M., Mathew, S.S., Masud, M.M.: Blockchain-based secure CIDS operation. In: 2021 5th Cyber Security in Networking Conference (CSNet), IEEE, (2021), pp. 103–106, doi: https://doi.org/10.1109/CSNet52717.2021.9614650

  105. Raje, S., Vaderia, S., Wilson, N., Panigrahi, R.: Decentralised firewall for malware detection. In: International Conference on Advances in Computing, Communication and Control 2017, ICAC3 2017, vol. 2018, pp. 1–5, (2018) doi: https://doi.org/10.1109/ICAC3.2017.8318755

  106. Alkadi, O., Moustafa, N., Turnbull, B.: A review of intrusion detection and blockchain applications in the cloud: approaches, challenges and solutions. IEEE Access 8, 104893–104917 (2020). https://doi.org/10.1109/ACCESS.2020.2999715

    Article  Google Scholar 

  107. Banerjee, M., Lee, J., Chen, Q., Choo, K.K.R.: Blockchain-based security layer for identification and isolation of malicious things in IoT: a conceptual design. In: International Conference on Computer Communications and Networks (ICCCN). vol. 2018 (2018), doi: https://doi.org/10.1109/ICCCN.2018.8487447

  108. Ide, T.: Collaborative anomaly detection on blockchain from noisy sensor data. In: IEEE International Conference on Data Mining Workshops, ICDMW, vol. 2018, pp. 120–127, (2019) doi: https://doi.org/10.1109/ICDMW.2018.00024

  109. Patel, A., Alhussian, H., Pedersen, J.M., Bounabat, B., Júnior, J.C., Katsikas, S.: A nifty collaborative intrusion detection and prevention architecture for Smart Grid ecosystems. Comput. Secur. 64, 92–109 (2017). https://doi.org/10.1016/J.COSE.2016.07.002

    Article  Google Scholar 

  110. Hu, B., Zhou,C., Tian, Y.C., Qin, Y., Junping, X.: A collaborative intrusion detection approach using blockchain for multimicrogrid systems. IEEE Transactions on Systems, Man, and Cybernetics. (2019), doi: https://doi.org/10.1109/TSMC.2019.2911548.

  111. Derhab, A., et al.: Blockchain and random subspace learning-based IDS for SDN-enabled industrial IoT security. Sensors 19(14), 3119 (2019). https://doi.org/10.3390/S19143119

    Article  Google Scholar 

  112. Fan, A.R., Dıaz Lopez, D., Felix Gomez M.: B SIEM-IoT: a blockchain-based and distributed SIEM for the Internet of Things. In: Springer, Vol. 11605, pp. 1–14, (2019)

  113. Husain, S.M.A.: “US20180211043A1 - Blockchain Based Security for End Points - Google Patents,” (2018). https://patents.google.com/patent/US20180211043A1/en. Accessed March 25, 2022

  114. Ujjan, R.M.A., Pervez,Z., Dahal, K.: Snort based collaborative intrusion detection system using blockchain in SDN. In: International Conference on Software, Knowledge, Information Management and Applications, (2019). doi: https://doi.org/10.1109/SKIMA47702.2019.8982413.

  115. Meng, W., Li, W., Yang, L.T., Li, P.: Enhancing challenge-based collaborative intrusion detection networks against insider attacks using blockchain. Int. J. Inf. Secur. 19(3), 279–290 (2020). https://doi.org/10.1007/S10207-019-00462-X/FIGURES/8

    Article  Google Scholar 

  116. Li, W., Wang, Y., Li, J., Au, M.H.: Toward a blockchain-based framework for challenge-based collaborative intrusion detection. Int. J. Inf. Secur. 20(2), 127–139 (2021). https://doi.org/10.1007/S10207-020-00488-6/FIGURES/8

    Article  Google Scholar 

  117. Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust Management for Host-Based Collaborative Intrusion Detection. Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5273 LNCS, pp. 109–122, (2008). doi: https://doi.org/10.1007/978-3-540-87353-2_9.

  118. Bao, F., Chen, I.R., Chang, M.J., Cho, J.H.: Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. IEEE Trans. Netw. Serv. Manag. 9(2), 169–183 (2012). https://doi.org/10.1109/TCOMM.2012.031912.110179

    Article  Google Scholar 

  119. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: ProvChain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. CCGRID, pp. 468–477, (2017). doi: https://doi.org/10.1109/CCGRID.2017.8

  120. Liu, Q., Hagenmeyer, V., Keller, H.B.: A review of rule learning-based intrusion detection systems and their prospects in smart grids. IEEE Access 9, 57542–57564 (2021). https://doi.org/10.1109/ACCESS.2021.3071263

    Article  Google Scholar 

  121. Mitchell, R., Chen, I.R.: Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems. IEEE Trans. Dependable Secur. Comput. 12(1), 16–30 (2015). https://doi.org/10.1109/TDSC.2014.2312327

    Article  Google Scholar 

  122. Sekar, R. et al.: Specification-based anomaly detection: a new approach for detecting network intrusions. In: 9th ACM Conference on Computer and Communications Security-CCS ’02, (2002). doi: https://doi.org/10.1145/586110.

  123. Hajiheidari, S., Wakil, K., Badri, M., Navimipour, N.J.: Intrusion detection systems in the Internet of things: a comprehensive investigation. Comput. Netw. 160, 165–191 (2019). https://doi.org/10.1016/J.COMNET.2019.05.014

    Article  Google Scholar 

  124. Di Pietro, R., Salleras, X., Signorini, M., Waisbard, E.: A blockchain-based trust system for the internet of things. In: Proceedings of ACM Symposium on Access Control Models and Technologies, SACMAT, (2018). doi: https://doi.org/10.1145/3205977.3205993

Download references

Funding

The funding of this project was provided by Zayed University, UAE; Cluster Grant: R20140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadhim Hayawi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article and agree to the publishing of its content. All authors certify that they have sufficient participation in this work including the conceptualization, research, design, analysis, writing, and redaction of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, S.S., Hayawi, K., Dawit, N.A. et al. Integration of blockchain and collaborative intrusion detection for secure data transactions in industrial IoT: a survey. Cluster Comput 25, 4129–4149 (2022). https://doi.org/10.1007/s10586-022-03645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03645-9

Keywords