Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Towards performance evaluation prediction in WSNs using artificial neural network multi-perceptron

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The use of formal methods in specifying and verifying WSNs protocols attracts several researchers. However, based practically on state-space exploration, these formal methods face scalability problems when the specified system is complicated, which is often the case with WSNs protocols. To overcome this last problem, this paper proposes exploiting a machine learning approach to make predictions when the specified system becomes highly complex due to the increasing number of nodes. The main contribution of this paper is the application of a Multi-Layer Perceptron (MLP) to predict a set of crucial performance metrics of the CSMA/CA MAC protocol based on the historical data generated from formal models representing the whole behaviour of the WSN, including waiting time (WT), delay performance (DP), waiting time for an acknowledgement (WTA), and the throughput (TH). The empirical results demonstrate the effectiveness of the proposed MLP architecture compared to other ML techniques (SVR and LR) using various evaluation criteria (MAE, MSE, RMSE). MLP gives the best, and minimum criteria values on all performance metrics datasets in terms of MSE values are around 4.90, 3.11, 8.88,  and \(4\times 10^{-5}\) for metrics WT, WTA, DP, and TH, respectively. The obtained results in this paper proved the efficiency of the combination between formal models (i.e. Hierarchical Timed Coloured Petri Nets) and machine learning approaches that use artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

This paper has a data which is a specification of the protocol model (https://drive.google.com/file/d/16n8VSklpwv3bUBnqkte7xOc6bOk39WwP/view).

Notes

  1. https://drive.google.com/file/d/16n8VSklpwv3bUBnqkte7xOc6bOk39WwP/view?usp=sharing

  2. https://cpntools.org/

  3. https://colab.research.google.com/

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Khanafer, M., Guennoun, M., Mouftah, H.T.: A survey of beacon-enabled IEEE 802.15. 4 mac protocols in wireless sensor networks. IEEE Commun. Surv. Tutor. 16(2), 856–876 (2013)

    Article  Google Scholar 

  3. Murata, T.: Petri nets and their application an introduction. In: Massana, K.A., Beaulieu, J.M., Matzke, N.J. (eds.) Management and Office Information Systems, pp. 351–368. Springer, Cham (1984)

    Chapter  Google Scholar 

  4. Jensen, K.: An introduction to the theoretical aspects of coloured petri nets. In: Workshop/School/Symposium of the REX Project (Research and Education in Concurrent Systems), Springer. pp. 230–272 (1993).

  5. Zroug, S., Kahloul, L., Benharzallah, S., Djouani, K.: A hierarchical formal method for performance evaluation of WSNS protocol. Computing 103(6), 1183–1208 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shahidinejad, A., Ghobaei-Arani, M., Esmaeili, L.: An elastic controller using colored petri nets in cloud computing environment. Clust. Comput. 23(2), 1045–1071 (2020)

    Article  Google Scholar 

  7. Mitchell, T.M., et al.: Machine Learning. McGraw Hill, Burr Ridge (1997)

    MATH  Google Scholar 

  8. Norving, P., Russell, S.: Artificial Intelligence: A Modern Approach, Global Pearson Education Limited, London (2021)

    Google Scholar 

  9. Shuja, J., Bilal, K., Alasmary, W., Sinky, H., Alanazi, E.: Applying machine learning techniques for caching in next-generation edge networks: a comprehensive survey. J. Netw. Comput. Appl. 181, 103005 (2021)

    Article  Google Scholar 

  10. Aqel, D., Al-Zubi, S., Mughaid, A., Jararweh, Y.: Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture. Clust. Comput. 25, 1–14 (2021)

    Google Scholar 

  11. Aqel, D., Hawashin, B.: Arabic relative clauses parsing based on inductive logic programming. Recent Patents Comput. Sci. 11(2), 121–133 (2018)

    Article  Google Scholar 

  12. Xiao, P., Ni, Z., Liu, D., Hu, Z.: A power and thermal-aware virtual machine management framework based on machine learning. Clust. Comput. 24, 1–18 (2021)

    Article  Google Scholar 

  13. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 116(44), 22071–22080 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2(2004), 41 (2004)

    Google Scholar 

  15. Ahad, N., Qadir, J., Ahsan, N.: Neural networks in wireless networks: techniques, applications and guidelines. J. Netw. Comput. Appl. 68, 1–27 (2016)

    Article  Google Scholar 

  16. Zroug, S., Remadna, I., Kahloul, L., Benharzallah, S., Terrissa, S.L.: Leveraging the power of machine learning for performance evaluation prediction in wireless sensor networks. In: 2021 International Conference on Information Technology (ICIT), pp. 864–869 (2021). IEEE

  17. CPN Tools can be downloaded (free for academics) from http://cpntools.org/. accessed 3 Dec 2021

  18. Faheem, M., Abbas, M.Z., Tuna, G., Gungor, V.C.: Edhrp: energy efficient event driven hybrid routing protocol for densely deployed wireless sensor networks. J. Netw. Comput. Appl. 58, 309–326 (2015)

    Article  Google Scholar 

  19. Faheem, M., Fizza, G., Ashraf, M.W., Butt, R.A., Ngadi, M.A., Gungor, V.C.: Big data acquired by internet of things-enabled industrial multichannel wireless sensors networks for active monitoring and control in the smart grid industry 4.0. Data Brief 35, 106854 (2021)

    Article  Google Scholar 

  20. Aissa, Y.B., Grichi, H., Khalgui, M., Koubâa, A., Bachir, A.: QCOF: new rpl extension for qos and congestion-aware in low power and lossy network. In: 14th International Conference on Software Technologies, pp. 560–569 (2019)

  21. Hmidi, Z., Kahloul, L., Benharzallah, S., Hamani, N.: Performance evaluation of ODMAC protocol for WSNS powered by ambient energy. Int. J. Simul. Process. Model. 17(1), 67–78 (2021)

    Article  Google Scholar 

  22. Zohra, H., Kahloul, L., Benharzallah, S.: Using priced timed automata for the specification and verification of CSMA/CA in WSNS. Int. J. Inf. Commun. Technol. 17(2), 129–145 (2020)

    Google Scholar 

  23. Hammal, Y., Ben-Othman, J., Mokdad, L., Abdelli, A.: Formal modeling and verification of an enhanced variant of the IEEE 802.11 CSMA/CA protocol. J. Commun. Netw. 16(4), 385–396 (2014)

    Article  Google Scholar 

  24. Elbes, M., Almaita, E., Alrawashdeh, T., Kanan, T., AlZu’bi, S., Hawashin, B.: An indoor localization approach based on deep learning for indoor location-based services. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 437–441 (2019). IEEE

  25. AlZu’bi, S., Aqel, D., Mughaid, A.: Recent intelligent approaches for managing and optimizing smart blood donation process. In: 2021 International Conference on Information Technology (ICIT), pp. 679–684 (2021). IEEE

  26. AlZu’bi, S., Jararweh, Y.: Data fusion in autonomous vehicles research, literature tracing from imaginary idea to smart surrounding community. In: 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), pp. 306–311 (2020). IEEE

  27. Kumar, D.P., Amgoth, T., Annavarapu, C.S.R.: Machine learning algorithms for wireless sensor networks: a survey. Inf. Fusion 49, 1–25 (2019)

    Article  Google Scholar 

  28. Martín, L., Zarzalejo, L.F., Polo, J., Navarro, A., Marchante, R., Cony, M.: Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning. Sol. Energy 84(10), 1772–1781 (2010)

    Article  Google Scholar 

  29. Khorasani, F., Naji, H.R.: Energy efficient data aggregation in wireless sensor networks using neural networks. Int. J. Sensor Netw. 24(1), 26–42 (2017)

    Article  Google Scholar 

  30. Mehmood, A., Lv, Z., Lloret, J., Umar, M.M.: Eldc: an artificial neural network based energy-efficient and robust routing scheme for pollution monitoring in WSNS. IEEE Trans. Emerg. Top. Comput. 8(1), 106–114 (2017)

    Article  Google Scholar 

  31. Fadlullah, Z.M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., Mizutani, K.: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 19(4), 2432–2455 (2017)

    Article  Google Scholar 

  32. Duffy, A.H.: The “what’’ and “how’’ of learning in design. IEEE Expert 12(3), 71–76 (1997)

    Article  Google Scholar 

  33. Langley, P., Simon, H.A.: Applications of machine learning and rule induction. Commun. ACM 38(11), 54–64 (1995)

    Article  Google Scholar 

  34. Yuvaraj, N., SriPreethaa, K.: Diabetes prediction in healthcare systems using machine learning algorithms on hadoop cluster. Clust. Comput. 22(1), 1–9 (2019)

    Article  Google Scholar 

  35. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt. Ltd., Delhi (2009)

    Google Scholar 

  36. Guilhoto, L.F.: An overview of artificial neural networks for mathematicians (2018)

  37. Westergaard, M.: Cpn tools 4: Multi-formalism and extensibility. In: International Conference on Applications and Theory of Petri Nets and Concurrency, pp. 400–409 (2013). Springer

  38. Attia, H.B., Kahloul, L., Benhazrallah, S., Bourekkache, S.: Using hierarchical timed coloured petri nets in the formal study of TRBAC security policies. Int. J. Inf. Secur. 19(2), 163–187 (2020)

    Article  Google Scholar 

  39. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 24, 1–8 (2011)

    Google Scholar 

  40. Babu, G.S., Zhao, P., Li, X.-L.: Deep convolutional neural network based regression approach for estimation of remaining useful life. In: International Conference on Database Systems for Advanced Applications, pp. 214–228 (2016). Springer

  41. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  42. Yan, C., Chang, X., Luo, M., Zheng, Q., Zhang, X., Li, Z., Nie, F.: Self-weighted robust lDA for multiclass classification with edge classes. ACM Trans. Intell. Syst. Technol. (TIST) 12(1), 1–19 (2020)

    Google Scholar 

  43. Chang, X., Nie, F., Wang, S., Yang, Y., Zhou, X., Zhang, C.: Compound rank-\(k\) projections for bilinear analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1502–1513 (2015)

    Article  MathSciNet  Google Scholar 

  44. Yan, C., Zheng, Q., Chang, X., Luo, M., Yeh, C.-H., Hauptman, A.G.: Semantics-preserving graph propagation for zero-shot object detection. IEEE Trans. Image Process. 29, 8163–8176 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We appreciate the time and efforts made by the editor during reviewing this manuscript. We pay our sincere thanks to the esteemed reviewers for their valuable comments and suggestions to improve the quality of this survey paper. This paper is an extended version of the presented paper entitled “Leveraging the Power of Machine Learning for Performance Evaluation Prediction in Wireless Sensor Networks” in the 2021 International Conference on Information Technology (ICIT).

Funding

This work has no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siham Zroug.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zroug, S., Remadna, I., Kahloul, L. et al. Towards performance evaluation prediction in WSNs using artificial neural network multi-perceptron. Cluster Comput 26, 1405–1423 (2023). https://doi.org/10.1007/s10586-022-03753-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03753-6

Keywords