Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Machine learning-based computation offloading in edge and fog: a systematic review

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Today, Mobile Cloud Computing (MCC) alone can no longer respond to the increasing volume of data and satisfy the necessary delays in real-time applications. In addition, challenges such as security, energy consumption, storage space, bandwidth, lack of mobility support, and lack of location awareness have made this problem more challenging. Expanding applications such as online gaming, Augmented Reality (AR), Virtual Reality (VR), metaverse, e-health, and the Internet of Things (IoT) have brought up new paradigms for processing big data. Some of the paradigms that have emerged in the last decade are trying to alleviate cloud computing problems jointly. Mobile Edge Computing (MEC) and Fog Computing (FC) are the most critical techniques that serve the IoT. One of the common points of the above paradigms is the offloading of IoT tasks. This paper reviews machine learning-based computation offloading mechanisms in the edge and fog environment. This review covers three significant areas of machine learning: supervised learning, unsupervised learning, and reinforcement learning. We discuss various performance metrics, tools, and case studies and analyze their advantages and disadvantages. We systematically elaborate on open issues and research challenges that are crucial for the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rahimi, M.R., Ren, J., Liu, C.H., Vasilakos, A.V., Venkatasubramanian, N.: Mobile cloud computing: a survey, state of art and future directions. Mobile Netw. Appl. 19, 133–143 (2014)

    Article  Google Scholar 

  2. Ghasemian Koochaksaraei, M.H., Toroghi Haghighat, A., Rezvani, M.H.: A bartering double auction resource allocation model in cloud environments. Concurr. Comput.: Prac. Exp. 34(19), e7024 (2022)

    Article  Google Scholar 

  3. Besharati, R., Rezvani, M.H., Sadeghi, M.M.G.: An incentive-compatible offloading mechanism in fog-cloud environments using second-price sealed-bid auction. J. Grid Comput. 19, 1 (2021)

    Article  Google Scholar 

  4. Cortés, R., Bonnaire, X., Marin, O., Sens, P.: Stream processing of healthcare sensor data: studying user traces to identify challenges from a big data perspective. Procedia Comput. Sci. 52, 1004–1009 (2015). https://doi.org/10.1016/j.procs.2015.05.093

    Article  Google Scholar 

  5. Mohammed Sadeeq, M., Abdulkareem, N.M., Zeebaree, S.R.M., Mikaeel Ahmed, D., Saifullah Sami, A., Zebari, R.R.: IoT and cloud computing issues, challenges and opportunities: a review. Qubahan Acad. J. 1(2), 1–7 (2021). https://doi.org/10.48161/qaj.v1n2a36

    Article  Google Scholar 

  6. Wang, L., Zhang, F., Aroca, J.A., Vasilakos, A.V., Zheng, K., Hou, C., Li, D. and Liu, Z., 2013. A general framework for achieving energy efficiency in data center networks. arXiv preprint arXiv:1304.3519.

  7. Abbasi-khazaei, T., Rezvani, M.H.: Energy-aware and Carbon-efficient VM placement optimization in cloud datacenters using evolutionary computing methods. Soft Comput. 26, 9287–9322 (2022)

    Article  Google Scholar 

  8. Vidal, V., Honório, L., Pinto, M., Dantas, M., Aguiar, M., Capretz, M.: An edge-fog architecture for distributed 3D reconstruction and remote monitoring of a power plant site in the context of 5G. Sensors 22(12), 4494 (2022). https://doi.org/10.3390/s22124494

    Article  Google Scholar 

  9. Sabireen, H., Neelanarayanan, V.J.I.E.: A review on fog computing: architecture, Fog with IoT. Algorithms Res. Chall. ICT Exp. 7(2), 162–176 (2021). https://doi.org/10.1016/j.icte.2021.05.004

    Article  Google Scholar 

  10. Koohang, A., Sargent, C.S., Nord, J.H., Paliszkiewicz, J.: Internet of things (IoT): From awareness to continued use. Int. J. Inf. Manag. 62, 102442 (2022). https://doi.org/10.1016/j.ijinfomgt.2021.102442

    Article  Google Scholar 

  11. Zabihi, Z., Moghadam, A.M.E., Rezvani, M.H.: Reinforcement learning methods for computing offloading: a systematic review. ACM Comput. Surv. (2023). https://doi.org/10.1145/3603703

    Article  Google Scholar 

  12. Khattak, H.A., Arshad, H., Islam, S.U., Ahmed, G., Jabbar, S., Sharif, A.M., Khalid, S.: Utilization and load balancing in fog servers for health applications. EURASIP J. Wirel. Commun. Netw. (2019). https://doi.org/10.1186/s13638-019-1395-3

    Article  Google Scholar 

  13. Singh, J., Singh, P., Gill, S.S.: Fog computing: a taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021). https://doi.org/10.1016/j.jpdc.2021.06.005

    Article  Google Scholar 

  14. Jafari, V., Rezvani, M.H.: Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II Metaheuristic algorithm. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03388-2

    Article  Google Scholar 

  15. Khan, S., Parkinson, S., Qin, Y.: Fog computing security: a review of current applications and security solutions. J. Cloud Comput. (2017). https://doi.org/10.1186/s13677-017-0090-3

    Article  Google Scholar 

  16. Deep, S., Zheng, X., Jolfaei, A., Yu, D., Ostovari, P., Kashif Bashir, A.: A survey of security and privacy issues in the Internet of Things from the layered context. Trans. Emerg. Telecommun. Technol. (2020). https://doi.org/10.1002/ett.3935

    Article  Google Scholar 

  17. de Maio, V., Brandic, I.: First Hop mobile offloading of DAG computations 2018 18th IEEE/ACM international symposium on cluster. Cloud Grid Comput. (CCGRID) (2018). https://doi.org/10.1109/ccgrid.2018.00023

    Article  Google Scholar 

  18. Zhang, K., Gui, X., Ren, D., Du, T., He, X.: Optimal pricing-based computation offloading and resource allocation for blockchain-enabled beyond 5G networks. Comput. Netw. 203, 108674 (2022). https://doi.org/10.1016/j.comnet.2021.108674

    Article  Google Scholar 

  19. Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust. Comput. 24(3), 1825–1853 (2021)

    Article  Google Scholar 

  20. Etemadi, M., Ghobaei-Arani, M., Shahidinejad, A.: Resource provisioning for IoT services in the fog computing environment: an autonomic approach. Comput. Commun. 161, 109–131 (2020). https://doi.org/10.1016/j.comcom.2020.07.028

    Article  Google Scholar 

  21. Khoobkar, M.H., Fooladi, M.D.T., Rezvani, M.H., Sadeghi, M.M.G.: Partial offloading with stable equilibrium in fog-cloud environments using replicator dynamics of evolutionary game theory. Cluster Comput. 25(2), 1393–1420 (2022)

    Article  Google Scholar 

  22. Zhao, H., Du, W., Liu, W., Lei, T., & Lei, Q. (2018). QoE Aware and Cell Capacity Enhanced Computation Offloading for Multi-Server Mobile Edge Computing Systems with Energy Harvesting Devices. 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). https://doi.org/10.1109/smartworld.2018.00133

  23. Huang, L., Feng, X., Zhang, L., Qian, L., Wu, Y.: Multi-server multi-user multi-task computation offloading for mobile edge computing networks. Sensors 19(6), 1446 (2019). https://doi.org/10.3390/s19061446

    Article  Google Scholar 

  24. Wang, S., Li, X., Sheng, Q.Z., Beheshti, A.: Performance analysis and optimization on scheduling stochastic cloud service requests: a survey. IEEE Trans. Netw. Serv. Manag. (2022). https://doi.org/10.1109/tnsm.2022.3181145

    Article  Google Scholar 

  25. Wen, Z., Yang, K., Liu, X., Li, S., Zou, J.: Joint Offloading and computing design in wireless powered mobile-edge computing systems with full-duplex relaying. IEEE Access 6, 72786–72795 (2018). https://doi.org/10.1109/access.2018.2879334

    Article  Google Scholar 

  26. Ghafouri-ghomi, Z., Rezvani, M.H.: An optimized message routing approach inspired by the landlord-peasants game in disruption-tolerant networks. Ad Hoc Netw. 127, 102781 (2022)

    Article  Google Scholar 

  27. Dhal, S.B., Jungbluth, K., Lin, R., Sabahi, S.P., Bagavathiannan, M., Braga-Neto, U., Kalafatis, S.: A Machine-Learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations. Sensors 22(9), 3510 (2022). https://doi.org/10.3390/s22093510

    Article  Google Scholar 

  28. Alajlan, N.N., Ibrahim, D.M.: TinyML: enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. Micromachines 13(6), 851 (2022). https://doi.org/10.3390/mi13060851

    Article  Google Scholar 

  29. Huang, B., Li, Z., Tang, P., Wang, S., Zhao, J., Hu, H., Li, W., Chang, V.: Security modeling and efficient computation offloading for service workflow in mobile edge computing. Futur. Gener. Comput. Syst. 97, 755–774 (2019). https://doi.org/10.1016/j.future.2019.03.011

    Article  Google Scholar 

  30. Gupta, A., Gupta, S.K.: Flying through the secure fog: a complete study on UAV-Fog in heterogeneous networks. Int. J. Commun Syst (2022). https://doi.org/10.1002/dac.5237

    Article  Google Scholar 

  31. Zaman, S.K.U., Jehangiri, A.I., Maqsood, T., Ahmad, Z., Umar, A.I., Shuja, J., Alanazi, E., Alasmary, W.: Mobility-aware computational offloading in mobile edge networks: a survey. Clust. Comput. 24(4), 2735–2756 (2021). https://doi.org/10.1007/s10586-021-03268-6

    Article  Google Scholar 

  32. Rupe, J.: Reliability of computer systems and networks fault tolerance, analysis, and design. IIE Trans. 35(6), 586–587 (2003). https://doi.org/10.1080/07408170304426

    Article  Google Scholar 

  33. Alcaide Portet, S., Kosmidis, L., Hernandez, C., & Abella, J. (2020). Software-Only Triple Diverse Redundancy on GPUs for Autonomous Driving Platforms. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). https://doi.org/10.1109/dsn-s50200.2020.00045

  34. Liu, J., Zhou, A., Liu, C., Zhang, T., Qi, L., Wang, S., Buyya, R.: Reliability-enhanced task offloading in mobile edge computing environments. IEEE Internet Things J. 9(13), 10382–10396 (2022). https://doi.org/10.1109/jiot.2021.3115807

    Article  Google Scholar 

  35. Echigo, H., Cao, Y., Bouazizi, M., Ohtsuki, T.: A Deep learning-based low overhead beam selection in mmWave communications. IEEE Trans. Veh. Technol. 70(1), 682–691 (2021). https://doi.org/10.1109/tvt.2021.3049380

    Article  Google Scholar 

  36. Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M.: A survey on the computation offloading approaches in mobile edge/cloud computing environment: a stochastic-based perspective. J. Grid Comput. 18(4), 639–671 (2020). https://doi.org/10.1007/s10723-020-09530-2

    Article  Google Scholar 

  37. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation offloading in mobile edge for IoT applications. Futur. Gener. Comput. Syst. 90, 149–157 (2019). https://doi.org/10.1016/j.future.2018.07.050

    Article  Google Scholar 

  38. Sangaiah, A.K., Medhane, D.V., Han, T., Hossain, M.S., Muhammad, G.: Enforcing position-based confidentiality with machine learning paradigm through mobile edge computing in real-time industrial informatics. IEEE Trans. Industr. Inf. 15(7), 4189–4196 (2019). https://doi.org/10.1109/tii.2019.2898174

    Article  Google Scholar 

  39. Maray, M., Shuja, J.: Computation offloading in mobile cloud computing and mobile edge computing: survey, taxonomy, and open issues. Mob. Inf. Syst. 2022, 1–17 (2022). https://doi.org/10.1155/2022/1121822

    Article  Google Scholar 

  40. Islam, A., Debnath, A., Ghose, M., Chakraborty, S.: A survey on task offloading in multi-access edge computing. J. Syst. Arch. 118, 102225 (2021). https://doi.org/10.1016/j.sysarc.2021.102225

    Article  Google Scholar 

  41. Lin, H., Zeadally, S., Chen, Z., Labiod, H., Wang, L.: A survey on computation offloading modeling for edge computing. J. Netw. Comput. Appl. 169, 102781 (2020). https://doi.org/10.1016/j.jnca.2020.102781

    Article  Google Scholar 

  42. Huda, S.A., Moh, S.: Survey on computation offloading in UAV-Enabled mobile edge computing. J. Netw. Comput. Appl. 201, 103341 (2022). https://doi.org/10.1016/j.jnca.2022.103341

    Article  Google Scholar 

  43. Abdullah, D.B., Mohammed, H.H.: Computation offloading in the internet of connected vehicles: a systematic literature survey. J. Phys.: Conf. Ser. 1818(1), 012122 (2021). https://doi.org/10.1088/1742-6596/1818/1/012122

    Article  Google Scholar 

  44. Hao, J. and Gan, J., 2022. Delay-guaranteed Mobile Augmented Reality Task Offloading in Edge-assisted Environment.

  45. Ketykó, I., Kecskés, L., Nemes, C. and Farkas, L., 2016, June. Multi-user computation offloading as multiple knapsack problem for 5G mobile edge computing. In 2016 European Conference on Networks and Communications (EuCNC) (pp. 225–229). IEEE.

  46. Avgeris, M., Dechouniotis, D., Athanasopoulos, N., Papavassiliou, S.: Adaptive resource allocation for computation offloading: a control-theoretic approach. ACM Trans. Internet Technol. (TOIT) 19(2), 1–20 (2019)

    Article  Google Scholar 

  47. Leontiou, N., Dechouniotis, D., Denazis, S., Papavassiliou, S.: A hierarchical control framework of load balancing and resource allocation of cloud computing services. Comput. Electr. Eng. 67, 235–251 (2018)

    Article  Google Scholar 

  48. Ejaz, W., Basharat, M., Saadat, S., Khattak, A.M., Naeem, M., Anpalagan, A.: Learning paradigms for communication and computing technologies in IoT systems. Comput. Commun. 153, 11–25 (2020). https://doi.org/10.1016/j.comcom.2020.01.043

    Article  Google Scholar 

  49. Dash, S.K., Dash, S., Mishra, J., Mishra, S.: Opportunistic mobile data offloading using machine learning approach. Wirel. Pers. Commun. 110(1), 125–139 (2019). https://doi.org/10.1007/s11277-019-06715-1

    Article  Google Scholar 

  50. Bernstein, P.: Machine learning: architecture in the age of artificial intelligence, 1st edn. RIBA Publishing, London (2022)

    Book  Google Scholar 

  51. Liu, S.: A concise introduction to machine learning A.C. FaulCRC press, 2019, 314 pages, £46.99, paperbackISBN: 978‐0‐8153‐8410‐6. Int. Stat. Rev. 88(2), 517–518 (2020). https://doi.org/10.1111/insr.12397

    Article  Google Scholar 

  52. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson Education India, New Delhi (2016)

    Google Scholar 

  53. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020). https://doi.org/10.1016/j.comnet.2020.107496

    Article  Google Scholar 

  54. Nguyen, D., Nguyen, C., Thuan Duong-Ba, Nguyen, H., Nguyen, A., & Tran, T. (2017). Joint network coding and machine learning for error-prone wireless broadcast. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). https://doi.org/10.1109/ccwc.2017.7868415

  55. Hazra, A., Rana, P., Adhikari, M., Amgoth, T.: Fog computing for next-generation internet of things: fundamental, state-of-the-art and research challenges. Comput. Sci.e Rev. 48, 100549 (2023)

    Article  MATH  Google Scholar 

  56. Cui, K., Lin, B., Sun, W., Sun, W.: Learning-based task offloading for marine fog-cloud computing networks of USV cluster. Electronics 8(11), 1287 (2019)

    Article  Google Scholar 

  57. Cui, K., Sun, W., & Sun, W. (2019, August). Joint computation offloading and resource management for usvs cluster of fog-cloud computing architecture. In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp. 92–99). IEEE.

  58. Zhang, Y., Di, B., Zheng, Z., Lin, J. and Song, L., 2019, December. Joint data offloading and resource allocation for multi-cloud heterogeneous mobile edge computing using multi-agent reinforcement learning. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.

  59. Wang, Z., Lv, T., Chang, Z.: Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing. Comput. Netw. 205, 108732 (2022). https://doi.org/10.1016/j.comnet.2021.108732

    Article  Google Scholar 

  60. Alfarraj, O.: A machine learning-assisted data aggregation and offloading system for cloud–IoT communication. Peer-to-Peer Netw. Appl. 14(4), 2554–2564 (2020). https://doi.org/10.1007/s12083-020-01014-0

    Article  Google Scholar 

  61. (Offloading) QoE-aware Application Mapping and Energy-aware Module Placement in Fog Computing + Offloading. (2022). International Journal of Web Services Research, 19(1), 0. https://doi.org/10.4018/ijwsr.299017

  62. Yu, S., Wang, X., & Langar, R. (2017). Computation offloading for mobile edge computing: A deep learning approach. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). https://doi.org/10.1109/pimrc.2017.8292514

  63. Li, G., Chen, M., Wei, X., Qi, T. and Zhuang, W., 2020, June. Computation Offloading With Reinforcement Learning in D2D-MEC Network. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (pp. 69–74). IEEE.

  64. Huang, L., Feng, X., Feng, A., Huang, Y., Qian, L.P.: Distributed deep learning-based offloading for mobile edge computing networks. Mobile Netw. Appl. (2018). https://doi.org/10.1007/s11036-018-1177-x

    Article  Google Scholar 

  65. Qiao, G., Leng, S., Zhang, Y.: Online learning and optimization for computation offloading in D2D Edge computing and networks. Mobile Netw. Appl. (2019). https://doi.org/10.1007/s11036-018-1176-y

    Article  Google Scholar 

  66. Feng, W., Zhang, N., Li, S., Lin, S., Ning, R., Yang, S., Gao, Y.: Latency minimization of reverse offloading in vehicular edge computing. IEEE Trans. Veh. Technol. 71(5), 5343–5357 (2022). https://doi.org/10.1109/tvt.2022.3151806

    Article  Google Scholar 

  67. Jeong, H. J., Lee, H. J., Shin, C. H., & Moon, S. M. (2018). IONN. Proceedings of the ACM Symposium on Cloud Computing. https://doi.org/10.1145/3267809.3267828

  68. Diao, X., Zheng, J., Cai, Y., Dong, X., & Zhang, X. (2018). Joint User Clustering, Resource Allocation and Power Control for NOMA-based Mobile Edge Computing. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/wcsp.2018.8555861

  69. Bozorgchenani, A., Tarchi, D., & Corazza, G. E. (August). An energy-aware offloading clustering approach (EAOCA) in fog computing. In 2017 International Symposium on Wireless Communication Systems (ISWCS), pp. 390–395. IEEE (2017)

  70. Sheng, J., Hu, J., Teng, X., Wang, B., Pan, X.: Computation offloading strategy in mobile edge computing. Information 10(6), 191 (2019). https://doi.org/10.3390/info10060191

    Article  Google Scholar 

  71. Dao, N.N., Vu, D.N., Lee, Y., Cho, S., Cho, C., Kim, H.: Pattern-identified online task scheduling in multitier edge computing for industrial IoT services. Mob. Inf. Syst. 2018, 1–9 (2018). https://doi.org/10.1155/2018/2101206

    Article  Google Scholar 

  72. Wang, M., Shi, S., Gu, S., Gu, X., Qin, X.: Q-learning based computation offloading for multi-UAV-enabled cloud-edge computing networks. IET Commun. 14(15), 2481–2490 (2020)

    Article  Google Scholar 

  73. Khune, A., Pasricha, S.: Mobile network-aware middleware framework for cloud offloading: using reinforcement learning to make reward-based decisions in smartphone applications. IEEE Consumer Electron. Mag. 8(1), 42–48 (2019)

    Article  Google Scholar 

  74. Shi, S., Wang, M., Gu, S., Zheng, Z.: Energy-efficient UAV-enabled computation offloading for industrial internet of things: a deep reinforcement learning approach. Wirel. Netw. (2021). https://doi.org/10.1007/s11276-021-02789-7

    Article  Google Scholar 

  75. Yao, P., Chen, X., Chen, Y. and Li, Z., 2019, August. Deep reinforcement learning based offloading scheme for mobile edge computing. In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 417–421. IEEE

  76. Xu, J., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–373 (2017). https://doi.org/10.1109/tccn.2017.2725277

    Article  Google Scholar 

  77. Shahhosseini, S., Anzanpour, A., Azimi, I., Labbaf, S., Seo, D., Lim, S.S., Liljeberg, P., Dutt, N., Rahmani, A.M.: Exploring computation offloading in IoT systems. Inf. Syst. 107, 101860 (2022). https://doi.org/10.1016/j.is.2021.101860

    Article  Google Scholar 

  78. Akbari, M.R., Barati, H., Barati, A.: An efficient gray system theory-based routing protocol for energy consumption management in the internet of things using fog and cloud computing. Computing (2022). https://doi.org/10.1007/s00607-021-01048-z

    Article  Google Scholar 

  79. Liu, J., Zhang, Q.: Code-partitioning offloading schemes in mobile edge computing for augmented reality. IEEE Access 7, 11222–11236 (2019). https://doi.org/10.1109/access.2019.2891113

    Article  Google Scholar 

  80. Wang, X., Xu, W., & Jin, Z. A Hidden Markov Model based dynamic scheduling approach for mobile cloud telemonitoring. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). https://doi.org/10.1109/bhi.2017.7897258 (2017).

  81. Ivanchenko, O., Kharchenko, V., Moroz, B., Kabak, L., & Smoktii, K.. Semi-Markov availability model considering deliberate malicious impacts on an Infrastructure-as-a-Service Cloud. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). https://doi.org/10.1109/tcset.2018.8336266 (2018)

  82. Skarlat, O., Nardelli, M., Schulte, S. and Dustdar, S., , May. Towards qos-aware fog service placement. In 2017 IEEE 1st international conference on Fog and Edge Computing (ICFEC) (pp. 89–96). IEEE (2017)

  83. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 4(5), 1185–1192 (2017)

    Article  Google Scholar 

  84. Nobre, R., The difference between QoE and QoS (and why it matters). Blog, Accedian, February, 19 (2020)

  85. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of experience (QoE)-aware placement of applications in Fog computing environments. J. Parallel Distrib. Comput. 132, 190–203 (2019)

    Article  Google Scholar 

  86. de Maio, V., & Brandic, I. (2019). Multi-Objective Mobile Edge Provisioning in Small Cell Clouds. Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering. https://doi.org/10.1145/3297663.3310301

  87. Sun, W., Liu, J., Yue, Y.: AI-enhanced offloading in edge computing: when machine learning meets industrial IoT. IEEE Netw. 33(5), 68–74 (2019). https://doi.org/10.1109/mnet.001.1800510

    Article  Google Scholar 

  88. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Netw. 32(1), 96–101 (2018). https://doi.org/10.1109/mnet.2018.1700202

    Article  Google Scholar 

  89. Wang, R., Li, M., Peng, L., Hu, Y., Hassan, M.M., Alelaiwi, A.: Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration. Futur. Gener. Comput. Syst. 102, 66–74 (2020). https://doi.org/10.1016/j.future.2019.08.001

    Article  Google Scholar 

  90. Rahbari, D., Nickray, M.: Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw. Appl. 13(1), 104–122 (2019). https://doi.org/10.1007/s12083-019-00721-7

    Article  Google Scholar 

  91. Wu, S., Xia, W., Cui, W., Chao, Q., Lan, Z., Yan, F., & Shen, L. An Efficient Offloading Algorithm Based on Support Vector Machine for Mobile Edge Computing in Vehicular Networks. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/wcsp.2018.8555695 (2018)

  92. Samir, A., & Pahl, C. DLA: Detecting and Localizing Anomalies in Containerized Microservice Architectures Using Markov Models. 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud). https://doi.org/10.1109/ficloud.2019.00036 (2019)

  93. Lu, H., Gu, C., Luo, F., Ding, W., Liu, X.: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Futur. Gener. Comput. Syst. 102, 847–861 (2020). https://doi.org/10.1016/j.future.2019.07.019

    Article  Google Scholar 

  94. Aazam, M., Islam, S.U., Lone, S.T., Abbas, A.: Cloud of things (CoT): cloud-Fog-IoT task offloading for sustainable internet of things. IEEE Trans. Sustain. Comput. 7(1), 87–98 (2022). https://doi.org/10.1109/tsusc.2020.3028615

    Article  Google Scholar 

  95. Manogaran, G., Srivastava, G., Muthu, B.A., Baskar, S., Mohamed Shakeel, P., Hsu, C.H., Bashir, A.K., Kumar, P.M.: A response-aware traffic offloading scheme using regression machine learning for user-centric large-scale internet of things. IEEE Internet Things J. 8(5), 3360–3368 (2021). https://doi.org/10.1109/jiot.2020.3022322

    Article  Google Scholar 

  96. Shin, K. Y., Jeong, H. J., & Moon, S. M. Enhanced Partitioning of DNN Layers for Uploading from Mobile Devices to Edge Servers. The 3rd International Workshop on Deep Learning for Mobile Systems and Applications - EMDL ’19. https://doi.org/10.1145/3325413.3329788 (2019)

  97. Zhao, M., Zhou, K.: Selective offloading by exploiting ARIMA-BP for energy optimization in mobile edge computing networks. Algorithms 12(2), 48 (2019). https://doi.org/10.3390/a12020048

    Article  Google Scholar 

  98. Wang, Y., Zhu, H., Hei, X., Kong, Y., Ji, W., Zhu, L.: An energy saving based on task migration for mobile edge computing. EURASIP J. Wirel. Commun. Netw. (2019). https://doi.org/10.1186/s13638-019-1469-2

    Article  Google Scholar 

  99. Manogaran, G., Rawal, B.S., Song, H., Wang, H., Hsu, C., Saravanan, V., Kadry, S.N., Shakeel, P.M.: Optimal energy-centric resource allocation and offloading scheme for green internet of things using machine learning. ACM Trans. Internet Technol. 22(2), 1–19 (2022). https://doi.org/10.1145/3431500

    Article  Google Scholar 

  100. Goudarzi, M., Zamani, M., Toroghi Haghighat, A.: A genetic-based decision algorithm for multisite computation offloading in mobile cloud computing. Int. J. Commun. Syst. 30(10), e3241 (2016). https://doi.org/10.1002/dac.3241

    Article  Google Scholar 

  101. Xu, X., Li, Y., Huang, T., Xue, Y., Peng, K., Qi, L., Dou, W.: An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 133, 75–85 (2019). https://doi.org/10.1016/j.jnca.2019.02.008

    Article  Google Scholar 

  102. Aazam, M., Zeadally, S., Flushing, E.F.: Task offloading in edge computing for machine learning-based smart healthcare. Comput. Netw. 191, 108019 (2021). https://doi.org/10.1016/j.comnet.2021.108019

    Article  Google Scholar 

  103. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013). https://doi.org/10.1109/surv.2012.110112.00192

    Article  Google Scholar 

  104. Dai, S., Liwang, M., Liu, Y., Gao, Z., Huang, L., Du, X.: Hybrid quantum-behaved particle swarm optimization for mobile-edge computation offloading in internet of things. Commun. Comput. Inf. Sci. (2018). https://doi.org/10.1007/978-981-10-8890-2_26

    Article  Google Scholar 

  105. Huynh, L.N.T., Pham, Q.V., Pham, X.Q., Nguyen, T.D.T., Hossain, M.D., Huh, E.N.: Efficient computation offloading in multi-tier multi-access edge computing systems: a particle swarm optimization approach. Appl. Sci. 10(1), 203 (2019). https://doi.org/10.3390/app10010203

    Article  Google Scholar 

  106. Wang, Q., Mao, Y., Wang, Y., & Wang, L. Computation Tasks Offloading Scheme Based on Multi-cloudlet Collaboration for Edge Computing. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). https://doi.org/10.1109/cbd.2019.00067 (2019)

  107. Crutcher, A., Koch, C., Coleman, K., Patman, J., Esposito, F., & Calyam, P. Hyperprofile-Based Computation Offloading for Mobile Edge Networks. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). https://doi.org/10.1109/mass.2017.91 (2017)

  108. Yadav, A., Jana, P. K., Tiwari, S., & Gaur, A. Clustering-Based Energy Efficient Task Offloading for Sustainable Fog Computing. IEEE Transactions on Sustainable Computing. (2022)

  109. Hu, H., Zhang, J., Jiang, Y., Li, Z., Chen, Q., Zhang, J.: Computation offloading analysis in clustered fog radio access networks with repulsion. IEEE Trans. Veh. Technol. 70(10), 10804–10819 (2021)

    Article  Google Scholar 

  110. Qayyum, T., Trabelsi, Z., Malik, A., Hayawi, K.: Trajectory design for uav-based data collection using clustering model in smart farming. Sensors 22(1), 37 (2021)

    Article  Google Scholar 

  111. Helles, F., Holten-Andersen, P., Wichmann, L. (eds.): Multiple Use of Forests and Other Natural Resources: Aspects of Theory and Application, vol. 61. Springer Science & Business Media (2001)

  112. Jia, M., & Liang, W. Delay-Sensitive Multiplayer Augmented Reality Game Planning in Mobile Edge Computing. Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. https://doi.org/10.1145/3242102.3242129 (2018)

  113. Wang, D., Liu, Z., Wang, X., Lan, Y.: Mobility-aware task offloading and migration schemes in fog computing networks. IEEE Access 7, 43356–43368 (2019). https://doi.org/10.1109/access.2019.2908263

    Article  Google Scholar 

  114. Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C., Fortino, G.: Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access 8, 54074–54084 (2020)

    Article  Google Scholar 

  115. Vemireddy, S., Rout, R.R.: Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput. Netw. 199, 108463 (2021)

    Article  Google Scholar 

  116. Yang, Y., Chen, X., Chen, Y. and Li, Z., August. Green-oriented offloading and resource allocation by reinforcement learning in MEC. In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp. 378–382). IEEE. (2019)

  117. Li, X.: A computing offloading resource allocation scheme using deep reinforcement learning in mobile edge computing systems. J. Grid Comput. 19(3), 1–12 (2021)

    Article  Google Scholar 

  118. Wang, K., Wang, X., Liu, X.: A high reliable computing offloading strategy using deep reinforcement learning for iovs in edge computing. J. Grid Comput. 19(2), 1–15 (2021)

    Article  Google Scholar 

  119. Yang, G., Hou, L., Cheng, H., He, X., He, D., Chan, S.: Computation offloading time optimisation via Q-learning in opportunistic edge computing. IET Commun. 14(21), 3898–3906 (2020)

    Article  Google Scholar 

  120. Liu, P., He, H., Fu, T., Lu, H., Alelaiwi, A., Wasi, M.W.I.: Task offloading optimization of cruising UAV with fixed trajectory. Comput. Netw. 199, 108397 (2021)

    Article  Google Scholar 

  121. Fakhfakh, E., Hamouda, S.: Optimised Q-learning for WiFi offloading in dense cellular networks. IET Commun. 11(15), 2380–2385 (2017)

    Article  Google Scholar 

  122. Van Hasselt, H., Guez, A. and Silver, D., March. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence Vol. 30, No. 1. (2016)

  123. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  124. Zhang, C., Zheng, Z.: Task migration for mobile edge computing using deep reinforcement learning. Futur. Gener. Comput. Syst. 96, 111–118 (2019). https://doi.org/10.1016/j.future.2019.01.059

    Article  Google Scholar 

  125. Schaul, T., Quan, J., Antonoglou, I. and Silver, D., 2015. Prioritized experience replay. arXiv preprint arXiv:1511.05952.

  126. Yan, P., Choudhury, S.: Deep Q-learning enabled joint optimization of mobile edge computing multi-level task offloading. Comput. Commun. 180, 271–283 (2021)

    Article  Google Scholar 

  127. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. Performance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). https://doi.org/10.1109/vtcfall.2018.8690980 (2018)

  128. Laroui, M., Ibn-Khedher, H., Ali Cherif, M., Moungla, H., Afifi, H., Kamel, A.E.: SO-VMEC: Service offloading in virtual mobile edge computing using deep reinforcement learning. Trans. Emerg. Telecommun. Technol. (2021). https://doi.org/10.1002/ett.4211

    Article  Google Scholar 

  129. Wang, J., Wang, L.: Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03458-5

    Article  Google Scholar 

  130. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, 12 (1999)

  131. Dong, H., Dong, H., Ding, Z., Zhang, S., Chang: Deep reinforcement learning. Springer, Singapore (2020)

    Book  MATH  Google Scholar 

  132. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    Article  MATH  Google Scholar 

  133. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Advances in Neural Information Processing Systems, 12 (1999)

  134. Wang, J.X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J.Z., Munos, R., Blundell, C., Kumaran, D. and Botvinick, M., 2016. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763. (1999)

  135. Meng, H., Chao, D., & Guo, Q. Deep Reinforcement Learning Based Task Offloading Algorithm for Mobile-edge Computing Systems. Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence - ICMAI 2019. https://doi.org/10.1145/3325730.3325732 (2019)

  136. Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., Zhuang, W.: Learning-Based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019). https://doi.org/10.1109/tvt.2018.2890685

    Article  Google Scholar 

  137. Huang, L., Feng, X., Qian, L., Wu, Y.: Deep reinforcement learning-based task offloading and resource allocation for mobile edge computing. Mach. Learni. Intell. Commun. (2018). https://doi.org/10.1007/978-3-030-00557-3_4

    Article  Google Scholar 

  138. Zeng, D., Gu, L., Pan, S., Cai, J., Guo, S.: Resource management at the network edge: a deep reinforcement learning approach. IEEE Netw. 33(3), 26–33 (2019). https://doi.org/10.1109/mnet.2019.1800386

    Article  Google Scholar 

  139. Chen, Z., Wang, X.: Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach. EURASIP J. Wirel. Commun. Netw. (2020). https://doi.org/10.1186/s13638-020-01801-6

    Article  Google Scholar 

  140. Li, J., Gao, H., Lv, T., & Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. 2018 IEEE Wireless Communications and Networking Conference (WCNC). https://doi.org/10.1109/wcnc.2018.8377343 (2018)

  141. Huang, L., Feng, X., Zhang, C., Qian, L., Wu, Y.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 5(1), 10–17 (2019). https://doi.org/10.1016/j.dcan.2018.10.003

    Article  Google Scholar 

  142. Eom, H., Figueiredo, R., Cai, H., Zhang, Y., & Huang, G. MALMOS: Machine Learning-Based Mobile Offloading Scheduler with Online Training. 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering. https://doi.org/10.1109/mobilecloud.2015.19 (2015)

  143. Li, L., Siew, M., & Quek, T. Q. Learning-Based Pricing for Privacy-Preserving Job Offloading in Mobile Edge Computing. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/icassp.2019.8682862 (2019)

  144. Liang, F., Yu, W., Liu, X., Griffith, D., Golmie, N.: Toward edge-based deep learning in industrial internet of things. IEEE Internet Things J. 7(5), 4329–4341 (2020). https://doi.org/10.1109/jiot.2019.2963635

    Article  Google Scholar 

  145. Zhao, X., Yang, K., Chen, Q., Peng, D., Jiang, H., Xu, X., Shuang, X.: Deep learning based mobile data offloading in mobile edge computing systems. Futur. Gener. Comput. Syst. 99, 346–355 (2019). https://doi.org/10.1016/j.future.2019.04.039

    Article  Google Scholar 

  146. Ran, X., Chen, H., Liu, Z., Chen, J.: Delivering deep learning to mobile devices via offloading. Proc. Workshop Virtual Reality Augment. Reality Netw. (2017). https://doi.org/10.1145/3097895.3097903

    Article  Google Scholar 

  147. Dai, P., Liu, K., Wu, X., Xing, H., Yu, Z., & Lee, V. C. S. A Learning Algorithm for Real-Time Service in Vehicular Networks with Mobile-Edge Computing. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). https://doi.org/10.1109/icc.2019.8761190 (2019)

  148. Kao, Y.H., Krishnamachari, B., Ra, M.R., Bai, F.: Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans. Mob. Comput. 16(11), 3056–3069 (2017). https://doi.org/10.1109/tmc.2017.2679712

    Article  Google Scholar 

  149. Sun, Y., Zhou, S., Xu, J.: EMM: energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE J. Sel. Areas Commun. 35(11), 2637–2646 (2017). https://doi.org/10.1109/jsac.2017.2760160

    Article  Google Scholar 

  150. Zhang, F., Ge, J., Wong, C., Li, C., Chen, X., Zhang, S., Luo, B., Zhang, H., Chang, V.: Online learning offloading framework for heterogeneous mobile edge computing system. J. Parallel Distrib. Comput. 128, 167–183 (2019). https://doi.org/10.1016/j.jpdc.2019.02.003

    Article  Google Scholar 

  151. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press, Cambridge (2018)

    MATH  Google Scholar 

  152. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Softw.: Prac. Exp. 47(9), 1275–1296 (2017)

    Google Scholar 

  153. Buyya, R., Ranjan, R., & Calheiros, R. N. (June). Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In 2009 international conference on high performance computing & simulation (pp. 1–11). IEEE. (2009)

  154. Rezvani, M. H., & Khabiri, D. (November). Gamers' Behaviour and Communication Analysis in Massively Multiplayer Online Games: A Survey. In 2018 2nd national and 1st international digital games research conference: Trends, technologies, and applications (DGRC) (pp. 61–69). IEEE. (2018)

  155. Fathy, F., Mansour, Y., Sabry, H., Refat, M., Wagdy, A.: Virtual reality and machine learning for predicting visual attention in a daylit exhibition space: a proof of concept. Ain Shams Eng. J. 14(6), 102098 (2023)

    Article  Google Scholar 

  156. Yang, M., Li, Y., Hu, P., Bai, J., Lv, J., Peng, X.: Robust multi-view clustering with incomplete information. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 1055–1069 (2022)

    Article  Google Scholar 

  157. Kharitonov, N.A., Maximov, A.G. and Tulupyev, A.L., Algebraic Bayesian networks: Naïve frequentist approach to local machine learning based on imperfect information from social media and expert estimates. In Artificial Intelligence: 17th Russian Conference, RCAI 2019, Ulyanovsk, Russia, October 21–25, 2019, Proceedings 17 (pp. 234–244). Springer International Publishing. (2019)

  158. Zhao, Y., Smidts, C.: Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states. Reliab. Eng. Syst. Saf. 224, 108541 (2022)

    Article  Google Scholar 

  159. Wen, J., Liu, C., Deng, S., Liu, Y., Fei, L., Yan, K., Xu, Y.: Deep double incomplete multi-view multi-label learning with incomplete labels and missing views. IEEE Trans. Neural Netw. Learn. Systems (2023). https://doi.org/10.1109/TNNLS.2023.3260349

    Article  Google Scholar 

  160. Khoobkar, M.H., Fooladi, M.D.T., Rezvani, M.H., Sadeghi, M.M.G.: Joint optimization of delay and energy in partial offloading using dual-population replicator dynamics. Expert Syst. Appl. 216, 119417 (2023)

    Article  Google Scholar 

  161. Bui, V.H., Hussain, A., Su, W.: A dynamic internal trading price strategy for networked microgrids: a deep reinforcement learning-based game-theoretic approach. IEEE Trans. Smart Grid 13(5), 3408–3421 (2022)

    Article  Google Scholar 

  162. Cao, K., Xie, L.: Game-theoretic inverse reinforcement learning: a differential pontryagin’s maximum principle approach. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3148376

    Article  Google Scholar 

  163. Yilmaz, T., Ulusoy, Ö.: Misinformation propagation in online social networks: game theoretic and reinforcement learning approaches. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3208793

    Article  Google Scholar 

  164. Teymoori, P. and Boukerche, A., May. Dynamic Multi-user Computation Offloading for Mobile Edge Computing using Game Theory and Deep Reinforcement Learning. In ICC 2022-IEEE International Conference on Communications pp. 1930–1935. IEEE. (2022)

  165. Mustafa, E., Shuja, J., Bilal, K., Mustafa, S., Maqsood, T., Rehman, F., Khan, A.U.R.: Reinforcement learning for intelligent online computation offloading in wireless powered edge networks. Clust. Comput. 26(2), 1053–1062 (2023)

    Article  Google Scholar 

  166. Wang, Y., Li, T., Liu, M., Li, C., Wang, H.: STSIIML: study on token shuffling under incomplete information based on machine learning. Int. J. Intell. Syst. (2022). https://doi.org/10.1002/int.23033

    Article  Google Scholar 

  167. Kumar, N., Singh, A., Handa, A. and Shukla, S.K., Detecting malicious accounts on the Ethereum blockchain with supervised learning. In Cyber Security Cryptography and Machine Learning: Fourth International Symposium, CSCML 2020, Be'er Sheva, Israel, July 2–3, 2020, Proceedings 4 (pp. 94–109). Springer International Publishing. (2020)

  168. Michalski, R., Dziubałtowska, D., Macek, P.: Revealing the character of nodes in a blockchain with supervised learning. IEEE Access 8, 109639–109647 (2020)

    Article  Google Scholar 

  169. Lakhan, A., Mohammed, M.A., Ibrahim, D.A., Kadry, S., Abdulkareem, K.H.: Its based on deep graph convolutional fraud detection network blockchain-enabled fog-cloud. IEEE Trans. Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2022.3147852

    Article  Google Scholar 

  170. Felizardo, L.K., Paiva, F.C.L., de Vita Graves, C., Matsumoto, E.Y., Costa, A.H.R., Del-Moral-Hernandez, E., Brandimarte, P.: Outperforming algorithmic trading reinforcement learning systems: a supervised approach to the cryptocurrency market. Expert Syst. Appl. 202, 117259 (2022)

    Article  Google Scholar 

  171. Martin, K., Rahouti, M., Ayyash, M., Alsmadi, I.: Anomaly detection in blockchain using network representation and machine learning. Secur. Priv. 5(2), e192 (2022)

    Google Scholar 

  172. Jayanetti, A., Halgamuge, S., Buyya, R.: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge-cloud computing environments. Futur. Gener. Comput. Syst. (2022). https://doi.org/10.1016/j.future.2022.06.012

    Article  Google Scholar 

  173. Yang, H., Li, G., Sun, G., Chen, J., Meng, X., Yu, H., Xu, W., Qu, Q., Ying, X.: Dispersed computing for tactical edge in future wars: vision, architecture, and challenges. Wirel. Commun. Mob. Comput. 2021, 1–31 (2021). https://doi.org/10.1155/2021/8899186

    Article  Google Scholar 

  174. Li, K., Wang, X., Ni, Q., Huang, M.: Entropy-based reinforcement learning for computation offloading service in software-defined multi-access edge computing. Futur. Gener. Comput. Syst. 136, 241–251 (2022). https://doi.org/10.1016/j.future.2022.06.002

    Article  Google Scholar 

  175. Rashid, Z. N., Zeebaree, S. R. M., Zebari, R. R., Ahmed, S. H., Shukur, H. M., & Alkhayyat, A. Distributed and Parallel Computing System Using Single-Client Multi-Hash Multi-Server Multi-Thread. 2021 1st Babylon International Conference on Information Technology and Science (BICITS). https://doi.org/10.1109/bicits51482.2021.9509872 (2021)

  176. AlMansour, N., Allah, N.M.: April. A survey of scheduling algorithms in cloud computing. In: 2019 International Conference on Computer and Information Sciences (ICCIS), pp. 1–6. IEEE, April 2019

  177. Zhang, W., Yin, S., Yang, C., Luo, Z., & Huang, S. arallel Computation Offloading Between MEC Servers with Metro Optical Network. 26th Optoelectronics and Communications Conference. https://doi.org/10.1364/oecc.2021.t2a.4 (2021).

  178. Liang, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2019). https://doi.org/10.1109/jiot.2018.2872122

    Article  Google Scholar 

  179. Zaman, S.K.U., Jehangiri, A.I., Maqsood, T., Haq, N.U., Umar, A.I., Shuja, J., Ahmad, Z., Dhaou, I.B., Alsharekh, M.F.: LiMPO: lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput. 26(1), 99–117 (2023)

    Article  Google Scholar 

  180. Nguyen, Q.N., Liu, J., Pan, Z., Benkacem, I., Tsuda, T., Taleb, T., Shimamoto, S., Sato, T.: PPCS: a progressive popularity-aware caching scheme for edge-based cache redundancy avoidance in information-centric networks. Sensors 19(3), 694 (2019). https://doi.org/10.3390/s19030694

    Article  Google Scholar 

  181. Li, B., Peng, Z., Hou, P., He, M., Anisetti, M., Jeon, G.: Reliability and capability based computation offloading strategy for vehicular ad hoc clouds. J. Cloud Comput. (2019). https://doi.org/10.1186/s13677-019-0147-6

    Article  Google Scholar 

  182. Ometov, A., Kozyrev, D., Rykov, V., Andreev, S., Gaidamaka, Y., Koucheryavy, Y.: Reliability-centric analysis of offloaded computation in cooperative wearable applications. Wirel. Commun. Mob. Comput. 2017, 1–15 (2017). https://doi.org/10.1155/2017/9625687

    Article  Google Scholar 

  183. Sheikh Sofla, M., Haghi Kashani, M., Mahdipour, E., Faghih Mirzaee, R.: Towards effective offloading mechanisms in fog computing. Multime. Tools Appl. 81(2), 1997–2042 (2021). https://doi.org/10.1007/s11042-021-11423-9

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. ST-a performed data collection and analysis. Project navigation and checking the validity of results were done by AMEM and MHR. ST-a wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. This manuscript reports the scientific findings of an academic Ph.D. thesis presented by Mrs. ST-a as the student and AMEM and MHR as thesis supervisors.

Corresponding author

Correspondence to Mohammad Hossein Rezvani.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

See Table 8

Table 8 List of Acronyms

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri-abed, S., Eftekhari Moghadam, A.M. & Rezvani, M.H. Machine learning-based computation offloading in edge and fog: a systematic review. Cluster Comput 26, 3113–3144 (2023). https://doi.org/10.1007/s10586-023-04100-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04100-z

Keywords