Abstract
Today, Mobile Cloud Computing (MCC) alone can no longer respond to the increasing volume of data and satisfy the necessary delays in real-time applications. In addition, challenges such as security, energy consumption, storage space, bandwidth, lack of mobility support, and lack of location awareness have made this problem more challenging. Expanding applications such as online gaming, Augmented Reality (AR), Virtual Reality (VR), metaverse, e-health, and the Internet of Things (IoT) have brought up new paradigms for processing big data. Some of the paradigms that have emerged in the last decade are trying to alleviate cloud computing problems jointly. Mobile Edge Computing (MEC) and Fog Computing (FC) are the most critical techniques that serve the IoT. One of the common points of the above paradigms is the offloading of IoT tasks. This paper reviews machine learning-based computation offloading mechanisms in the edge and fog environment. This review covers three significant areas of machine learning: supervised learning, unsupervised learning, and reinforcement learning. We discuss various performance metrics, tools, and case studies and analyze their advantages and disadvantages. We systematically elaborate on open issues and research challenges that are crucial for the next decade.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Rahimi, M.R., Ren, J., Liu, C.H., Vasilakos, A.V., Venkatasubramanian, N.: Mobile cloud computing: a survey, state of art and future directions. Mobile Netw. Appl. 19, 133–143 (2014)
Ghasemian Koochaksaraei, M.H., Toroghi Haghighat, A., Rezvani, M.H.: A bartering double auction resource allocation model in cloud environments. Concurr. Comput.: Prac. Exp. 34(19), e7024 (2022)
Besharati, R., Rezvani, M.H., Sadeghi, M.M.G.: An incentive-compatible offloading mechanism in fog-cloud environments using second-price sealed-bid auction. J. Grid Comput. 19, 1 (2021)
Cortés, R., Bonnaire, X., Marin, O., Sens, P.: Stream processing of healthcare sensor data: studying user traces to identify challenges from a big data perspective. Procedia Comput. Sci. 52, 1004–1009 (2015). https://doi.org/10.1016/j.procs.2015.05.093
Mohammed Sadeeq, M., Abdulkareem, N.M., Zeebaree, S.R.M., Mikaeel Ahmed, D., Saifullah Sami, A., Zebari, R.R.: IoT and cloud computing issues, challenges and opportunities: a review. Qubahan Acad. J. 1(2), 1–7 (2021). https://doi.org/10.48161/qaj.v1n2a36
Wang, L., Zhang, F., Aroca, J.A., Vasilakos, A.V., Zheng, K., Hou, C., Li, D. and Liu, Z., 2013. A general framework for achieving energy efficiency in data center networks. arXiv preprint arXiv:1304.3519.
Abbasi-khazaei, T., Rezvani, M.H.: Energy-aware and Carbon-efficient VM placement optimization in cloud datacenters using evolutionary computing methods. Soft Comput. 26, 9287–9322 (2022)
Vidal, V., Honório, L., Pinto, M., Dantas, M., Aguiar, M., Capretz, M.: An edge-fog architecture for distributed 3D reconstruction and remote monitoring of a power plant site in the context of 5G. Sensors 22(12), 4494 (2022). https://doi.org/10.3390/s22124494
Sabireen, H., Neelanarayanan, V.J.I.E.: A review on fog computing: architecture, Fog with IoT. Algorithms Res. Chall. ICT Exp. 7(2), 162–176 (2021). https://doi.org/10.1016/j.icte.2021.05.004
Koohang, A., Sargent, C.S., Nord, J.H., Paliszkiewicz, J.: Internet of things (IoT): From awareness to continued use. Int. J. Inf. Manag. 62, 102442 (2022). https://doi.org/10.1016/j.ijinfomgt.2021.102442
Zabihi, Z., Moghadam, A.M.E., Rezvani, M.H.: Reinforcement learning methods for computing offloading: a systematic review. ACM Comput. Surv. (2023). https://doi.org/10.1145/3603703
Khattak, H.A., Arshad, H., Islam, S.U., Ahmed, G., Jabbar, S., Sharif, A.M., Khalid, S.: Utilization and load balancing in fog servers for health applications. EURASIP J. Wirel. Commun. Netw. (2019). https://doi.org/10.1186/s13638-019-1395-3
Singh, J., Singh, P., Gill, S.S.: Fog computing: a taxonomy, systematic review, current trends and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021). https://doi.org/10.1016/j.jpdc.2021.06.005
Jafari, V., Rezvani, M.H.: Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II Metaheuristic algorithm. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03388-2
Khan, S., Parkinson, S., Qin, Y.: Fog computing security: a review of current applications and security solutions. J. Cloud Comput. (2017). https://doi.org/10.1186/s13677-017-0090-3
Deep, S., Zheng, X., Jolfaei, A., Yu, D., Ostovari, P., Kashif Bashir, A.: A survey of security and privacy issues in the Internet of Things from the layered context. Trans. Emerg. Telecommun. Technol. (2020). https://doi.org/10.1002/ett.3935
de Maio, V., Brandic, I.: First Hop mobile offloading of DAG computations 2018 18th IEEE/ACM international symposium on cluster. Cloud Grid Comput. (CCGRID) (2018). https://doi.org/10.1109/ccgrid.2018.00023
Zhang, K., Gui, X., Ren, D., Du, T., He, X.: Optimal pricing-based computation offloading and resource allocation for blockchain-enabled beyond 5G networks. Comput. Netw. 203, 108674 (2022). https://doi.org/10.1016/j.comnet.2021.108674
Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust. Comput. 24(3), 1825–1853 (2021)
Etemadi, M., Ghobaei-Arani, M., Shahidinejad, A.: Resource provisioning for IoT services in the fog computing environment: an autonomic approach. Comput. Commun. 161, 109–131 (2020). https://doi.org/10.1016/j.comcom.2020.07.028
Khoobkar, M.H., Fooladi, M.D.T., Rezvani, M.H., Sadeghi, M.M.G.: Partial offloading with stable equilibrium in fog-cloud environments using replicator dynamics of evolutionary game theory. Cluster Comput. 25(2), 1393–1420 (2022)
Zhao, H., Du, W., Liu, W., Lei, T., & Lei, Q. (2018). QoE Aware and Cell Capacity Enhanced Computation Offloading for Multi-Server Mobile Edge Computing Systems with Energy Harvesting Devices. 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). https://doi.org/10.1109/smartworld.2018.00133
Huang, L., Feng, X., Zhang, L., Qian, L., Wu, Y.: Multi-server multi-user multi-task computation offloading for mobile edge computing networks. Sensors 19(6), 1446 (2019). https://doi.org/10.3390/s19061446
Wang, S., Li, X., Sheng, Q.Z., Beheshti, A.: Performance analysis and optimization on scheduling stochastic cloud service requests: a survey. IEEE Trans. Netw. Serv. Manag. (2022). https://doi.org/10.1109/tnsm.2022.3181145
Wen, Z., Yang, K., Liu, X., Li, S., Zou, J.: Joint Offloading and computing design in wireless powered mobile-edge computing systems with full-duplex relaying. IEEE Access 6, 72786–72795 (2018). https://doi.org/10.1109/access.2018.2879334
Ghafouri-ghomi, Z., Rezvani, M.H.: An optimized message routing approach inspired by the landlord-peasants game in disruption-tolerant networks. Ad Hoc Netw. 127, 102781 (2022)
Dhal, S.B., Jungbluth, K., Lin, R., Sabahi, S.P., Bagavathiannan, M., Braga-Neto, U., Kalafatis, S.: A Machine-Learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations. Sensors 22(9), 3510 (2022). https://doi.org/10.3390/s22093510
Alajlan, N.N., Ibrahim, D.M.: TinyML: enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications. Micromachines 13(6), 851 (2022). https://doi.org/10.3390/mi13060851
Huang, B., Li, Z., Tang, P., Wang, S., Zhao, J., Hu, H., Li, W., Chang, V.: Security modeling and efficient computation offloading for service workflow in mobile edge computing. Futur. Gener. Comput. Syst. 97, 755–774 (2019). https://doi.org/10.1016/j.future.2019.03.011
Gupta, A., Gupta, S.K.: Flying through the secure fog: a complete study on UAV-Fog in heterogeneous networks. Int. J. Commun Syst (2022). https://doi.org/10.1002/dac.5237
Zaman, S.K.U., Jehangiri, A.I., Maqsood, T., Ahmad, Z., Umar, A.I., Shuja, J., Alanazi, E., Alasmary, W.: Mobility-aware computational offloading in mobile edge networks: a survey. Clust. Comput. 24(4), 2735–2756 (2021). https://doi.org/10.1007/s10586-021-03268-6
Rupe, J.: Reliability of computer systems and networks fault tolerance, analysis, and design. IIE Trans. 35(6), 586–587 (2003). https://doi.org/10.1080/07408170304426
Alcaide Portet, S., Kosmidis, L., Hernandez, C., & Abella, J. (2020). Software-Only Triple Diverse Redundancy on GPUs for Autonomous Driving Platforms. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). https://doi.org/10.1109/dsn-s50200.2020.00045
Liu, J., Zhou, A., Liu, C., Zhang, T., Qi, L., Wang, S., Buyya, R.: Reliability-enhanced task offloading in mobile edge computing environments. IEEE Internet Things J. 9(13), 10382–10396 (2022). https://doi.org/10.1109/jiot.2021.3115807
Echigo, H., Cao, Y., Bouazizi, M., Ohtsuki, T.: A Deep learning-based low overhead beam selection in mmWave communications. IEEE Trans. Veh. Technol. 70(1), 682–691 (2021). https://doi.org/10.1109/tvt.2021.3049380
Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M.: A survey on the computation offloading approaches in mobile edge/cloud computing environment: a stochastic-based perspective. J. Grid Comput. 18(4), 639–671 (2020). https://doi.org/10.1007/s10723-020-09530-2
Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation offloading in mobile edge for IoT applications. Futur. Gener. Comput. Syst. 90, 149–157 (2019). https://doi.org/10.1016/j.future.2018.07.050
Sangaiah, A.K., Medhane, D.V., Han, T., Hossain, M.S., Muhammad, G.: Enforcing position-based confidentiality with machine learning paradigm through mobile edge computing in real-time industrial informatics. IEEE Trans. Industr. Inf. 15(7), 4189–4196 (2019). https://doi.org/10.1109/tii.2019.2898174
Maray, M., Shuja, J.: Computation offloading in mobile cloud computing and mobile edge computing: survey, taxonomy, and open issues. Mob. Inf. Syst. 2022, 1–17 (2022). https://doi.org/10.1155/2022/1121822
Islam, A., Debnath, A., Ghose, M., Chakraborty, S.: A survey on task offloading in multi-access edge computing. J. Syst. Arch. 118, 102225 (2021). https://doi.org/10.1016/j.sysarc.2021.102225
Lin, H., Zeadally, S., Chen, Z., Labiod, H., Wang, L.: A survey on computation offloading modeling for edge computing. J. Netw. Comput. Appl. 169, 102781 (2020). https://doi.org/10.1016/j.jnca.2020.102781
Huda, S.A., Moh, S.: Survey on computation offloading in UAV-Enabled mobile edge computing. J. Netw. Comput. Appl. 201, 103341 (2022). https://doi.org/10.1016/j.jnca.2022.103341
Abdullah, D.B., Mohammed, H.H.: Computation offloading in the internet of connected vehicles: a systematic literature survey. J. Phys.: Conf. Ser. 1818(1), 012122 (2021). https://doi.org/10.1088/1742-6596/1818/1/012122
Hao, J. and Gan, J., 2022. Delay-guaranteed Mobile Augmented Reality Task Offloading in Edge-assisted Environment.
Ketykó, I., Kecskés, L., Nemes, C. and Farkas, L., 2016, June. Multi-user computation offloading as multiple knapsack problem for 5G mobile edge computing. In 2016 European Conference on Networks and Communications (EuCNC) (pp. 225–229). IEEE.
Avgeris, M., Dechouniotis, D., Athanasopoulos, N., Papavassiliou, S.: Adaptive resource allocation for computation offloading: a control-theoretic approach. ACM Trans. Internet Technol. (TOIT) 19(2), 1–20 (2019)
Leontiou, N., Dechouniotis, D., Denazis, S., Papavassiliou, S.: A hierarchical control framework of load balancing and resource allocation of cloud computing services. Comput. Electr. Eng. 67, 235–251 (2018)
Ejaz, W., Basharat, M., Saadat, S., Khattak, A.M., Naeem, M., Anpalagan, A.: Learning paradigms for communication and computing technologies in IoT systems. Comput. Commun. 153, 11–25 (2020). https://doi.org/10.1016/j.comcom.2020.01.043
Dash, S.K., Dash, S., Mishra, J., Mishra, S.: Opportunistic mobile data offloading using machine learning approach. Wirel. Pers. Commun. 110(1), 125–139 (2019). https://doi.org/10.1007/s11277-019-06715-1
Bernstein, P.: Machine learning: architecture in the age of artificial intelligence, 1st edn. RIBA Publishing, London (2022)
Liu, S.: A concise introduction to machine learning A.C. FaulCRC press, 2019, 314 pages, £46.99, paperbackISBN: 978‐0‐8153‐8410‐6. Int. Stat. Rev. 88(2), 517–518 (2020). https://doi.org/10.1111/insr.12397
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson Education India, New Delhi (2016)
Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput. Netw. 182, 107496 (2020). https://doi.org/10.1016/j.comnet.2020.107496
Nguyen, D., Nguyen, C., Thuan Duong-Ba, Nguyen, H., Nguyen, A., & Tran, T. (2017). Joint network coding and machine learning for error-prone wireless broadcast. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). https://doi.org/10.1109/ccwc.2017.7868415
Hazra, A., Rana, P., Adhikari, M., Amgoth, T.: Fog computing for next-generation internet of things: fundamental, state-of-the-art and research challenges. Comput. Sci.e Rev. 48, 100549 (2023)
Cui, K., Lin, B., Sun, W., Sun, W.: Learning-based task offloading for marine fog-cloud computing networks of USV cluster. Electronics 8(11), 1287 (2019)
Cui, K., Sun, W., & Sun, W. (2019, August). Joint computation offloading and resource management for usvs cluster of fog-cloud computing architecture. In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp. 92–99). IEEE.
Zhang, Y., Di, B., Zheng, Z., Lin, J. and Song, L., 2019, December. Joint data offloading and resource allocation for multi-cloud heterogeneous mobile edge computing using multi-agent reinforcement learning. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.
Wang, Z., Lv, T., Chang, Z.: Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing. Comput. Netw. 205, 108732 (2022). https://doi.org/10.1016/j.comnet.2021.108732
Alfarraj, O.: A machine learning-assisted data aggregation and offloading system for cloud–IoT communication. Peer-to-Peer Netw. Appl. 14(4), 2554–2564 (2020). https://doi.org/10.1007/s12083-020-01014-0
(Offloading) QoE-aware Application Mapping and Energy-aware Module Placement in Fog Computing + Offloading. (2022). International Journal of Web Services Research, 19(1), 0. https://doi.org/10.4018/ijwsr.299017
Yu, S., Wang, X., & Langar, R. (2017). Computation offloading for mobile edge computing: A deep learning approach. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). https://doi.org/10.1109/pimrc.2017.8292514
Li, G., Chen, M., Wei, X., Qi, T. and Zhuang, W., 2020, June. Computation Offloading With Reinforcement Learning in D2D-MEC Network. In 2020 International Wireless Communications and Mobile Computing (IWCMC) (pp. 69–74). IEEE.
Huang, L., Feng, X., Feng, A., Huang, Y., Qian, L.P.: Distributed deep learning-based offloading for mobile edge computing networks. Mobile Netw. Appl. (2018). https://doi.org/10.1007/s11036-018-1177-x
Qiao, G., Leng, S., Zhang, Y.: Online learning and optimization for computation offloading in D2D Edge computing and networks. Mobile Netw. Appl. (2019). https://doi.org/10.1007/s11036-018-1176-y
Feng, W., Zhang, N., Li, S., Lin, S., Ning, R., Yang, S., Gao, Y.: Latency minimization of reverse offloading in vehicular edge computing. IEEE Trans. Veh. Technol. 71(5), 5343–5357 (2022). https://doi.org/10.1109/tvt.2022.3151806
Jeong, H. J., Lee, H. J., Shin, C. H., & Moon, S. M. (2018). IONN. Proceedings of the ACM Symposium on Cloud Computing. https://doi.org/10.1145/3267809.3267828
Diao, X., Zheng, J., Cai, Y., Dong, X., & Zhang, X. (2018). Joint User Clustering, Resource Allocation and Power Control for NOMA-based Mobile Edge Computing. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/wcsp.2018.8555861
Bozorgchenani, A., Tarchi, D., & Corazza, G. E. (August). An energy-aware offloading clustering approach (EAOCA) in fog computing. In 2017 International Symposium on Wireless Communication Systems (ISWCS), pp. 390–395. IEEE (2017)
Sheng, J., Hu, J., Teng, X., Wang, B., Pan, X.: Computation offloading strategy in mobile edge computing. Information 10(6), 191 (2019). https://doi.org/10.3390/info10060191
Dao, N.N., Vu, D.N., Lee, Y., Cho, S., Cho, C., Kim, H.: Pattern-identified online task scheduling in multitier edge computing for industrial IoT services. Mob. Inf. Syst. 2018, 1–9 (2018). https://doi.org/10.1155/2018/2101206
Wang, M., Shi, S., Gu, S., Gu, X., Qin, X.: Q-learning based computation offloading for multi-UAV-enabled cloud-edge computing networks. IET Commun. 14(15), 2481–2490 (2020)
Khune, A., Pasricha, S.: Mobile network-aware middleware framework for cloud offloading: using reinforcement learning to make reward-based decisions in smartphone applications. IEEE Consumer Electron. Mag. 8(1), 42–48 (2019)
Shi, S., Wang, M., Gu, S., Zheng, Z.: Energy-efficient UAV-enabled computation offloading for industrial internet of things: a deep reinforcement learning approach. Wirel. Netw. (2021). https://doi.org/10.1007/s11276-021-02789-7
Yao, P., Chen, X., Chen, Y. and Li, Z., 2019, August. Deep reinforcement learning based offloading scheme for mobile edge computing. In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 417–421. IEEE
Xu, J., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–373 (2017). https://doi.org/10.1109/tccn.2017.2725277
Shahhosseini, S., Anzanpour, A., Azimi, I., Labbaf, S., Seo, D., Lim, S.S., Liljeberg, P., Dutt, N., Rahmani, A.M.: Exploring computation offloading in IoT systems. Inf. Syst. 107, 101860 (2022). https://doi.org/10.1016/j.is.2021.101860
Akbari, M.R., Barati, H., Barati, A.: An efficient gray system theory-based routing protocol for energy consumption management in the internet of things using fog and cloud computing. Computing (2022). https://doi.org/10.1007/s00607-021-01048-z
Liu, J., Zhang, Q.: Code-partitioning offloading schemes in mobile edge computing for augmented reality. IEEE Access 7, 11222–11236 (2019). https://doi.org/10.1109/access.2019.2891113
Wang, X., Xu, W., & Jin, Z. A Hidden Markov Model based dynamic scheduling approach for mobile cloud telemonitoring. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). https://doi.org/10.1109/bhi.2017.7897258 (2017).
Ivanchenko, O., Kharchenko, V., Moroz, B., Kabak, L., & Smoktii, K.. Semi-Markov availability model considering deliberate malicious impacts on an Infrastructure-as-a-Service Cloud. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). https://doi.org/10.1109/tcset.2018.8336266 (2018)
Skarlat, O., Nardelli, M., Schulte, S. and Dustdar, S., , May. Towards qos-aware fog service placement. In 2017 IEEE 1st international conference on Fog and Edge Computing (ICFEC) (pp. 89–96). IEEE (2017)
Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 4(5), 1185–1192 (2017)
Nobre, R., The difference between QoE and QoS (and why it matters). Blog, Accedian, February, 19 (2020)
Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of experience (QoE)-aware placement of applications in Fog computing environments. J. Parallel Distrib. Comput. 132, 190–203 (2019)
de Maio, V., & Brandic, I. (2019). Multi-Objective Mobile Edge Provisioning in Small Cell Clouds. Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering. https://doi.org/10.1145/3297663.3310301
Sun, W., Liu, J., Yue, Y.: AI-enhanced offloading in edge computing: when machine learning meets industrial IoT. IEEE Netw. 33(5), 68–74 (2019). https://doi.org/10.1109/mnet.001.1800510
Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Netw. 32(1), 96–101 (2018). https://doi.org/10.1109/mnet.2018.1700202
Wang, R., Li, M., Peng, L., Hu, Y., Hassan, M.M., Alelaiwi, A.: Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration. Futur. Gener. Comput. Syst. 102, 66–74 (2020). https://doi.org/10.1016/j.future.2019.08.001
Rahbari, D., Nickray, M.: Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw. Appl. 13(1), 104–122 (2019). https://doi.org/10.1007/s12083-019-00721-7
Wu, S., Xia, W., Cui, W., Chao, Q., Lan, Z., Yan, F., & Shen, L. An Efficient Offloading Algorithm Based on Support Vector Machine for Mobile Edge Computing in Vehicular Networks. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/wcsp.2018.8555695 (2018)
Samir, A., & Pahl, C. DLA: Detecting and Localizing Anomalies in Containerized Microservice Architectures Using Markov Models. 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud). https://doi.org/10.1109/ficloud.2019.00036 (2019)
Lu, H., Gu, C., Luo, F., Ding, W., Liu, X.: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Futur. Gener. Comput. Syst. 102, 847–861 (2020). https://doi.org/10.1016/j.future.2019.07.019
Aazam, M., Islam, S.U., Lone, S.T., Abbas, A.: Cloud of things (CoT): cloud-Fog-IoT task offloading for sustainable internet of things. IEEE Trans. Sustain. Comput. 7(1), 87–98 (2022). https://doi.org/10.1109/tsusc.2020.3028615
Manogaran, G., Srivastava, G., Muthu, B.A., Baskar, S., Mohamed Shakeel, P., Hsu, C.H., Bashir, A.K., Kumar, P.M.: A response-aware traffic offloading scheme using regression machine learning for user-centric large-scale internet of things. IEEE Internet Things J. 8(5), 3360–3368 (2021). https://doi.org/10.1109/jiot.2020.3022322
Shin, K. Y., Jeong, H. J., & Moon, S. M. Enhanced Partitioning of DNN Layers for Uploading from Mobile Devices to Edge Servers. The 3rd International Workshop on Deep Learning for Mobile Systems and Applications - EMDL ’19. https://doi.org/10.1145/3325413.3329788 (2019)
Zhao, M., Zhou, K.: Selective offloading by exploiting ARIMA-BP for energy optimization in mobile edge computing networks. Algorithms 12(2), 48 (2019). https://doi.org/10.3390/a12020048
Wang, Y., Zhu, H., Hei, X., Kong, Y., Ji, W., Zhu, L.: An energy saving based on task migration for mobile edge computing. EURASIP J. Wirel. Commun. Netw. (2019). https://doi.org/10.1186/s13638-019-1469-2
Manogaran, G., Rawal, B.S., Song, H., Wang, H., Hsu, C., Saravanan, V., Kadry, S.N., Shakeel, P.M.: Optimal energy-centric resource allocation and offloading scheme for green internet of things using machine learning. ACM Trans. Internet Technol. 22(2), 1–19 (2022). https://doi.org/10.1145/3431500
Goudarzi, M., Zamani, M., Toroghi Haghighat, A.: A genetic-based decision algorithm for multisite computation offloading in mobile cloud computing. Int. J. Commun. Syst. 30(10), e3241 (2016). https://doi.org/10.1002/dac.3241
Xu, X., Li, Y., Huang, T., Xue, Y., Peng, K., Qi, L., Dou, W.: An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 133, 75–85 (2019). https://doi.org/10.1016/j.jnca.2019.02.008
Aazam, M., Zeadally, S., Flushing, E.F.: Task offloading in edge computing for machine learning-based smart healthcare. Comput. Netw. 191, 108019 (2021). https://doi.org/10.1016/j.comnet.2021.108019
Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013). https://doi.org/10.1109/surv.2012.110112.00192
Dai, S., Liwang, M., Liu, Y., Gao, Z., Huang, L., Du, X.: Hybrid quantum-behaved particle swarm optimization for mobile-edge computation offloading in internet of things. Commun. Comput. Inf. Sci. (2018). https://doi.org/10.1007/978-981-10-8890-2_26
Huynh, L.N.T., Pham, Q.V., Pham, X.Q., Nguyen, T.D.T., Hossain, M.D., Huh, E.N.: Efficient computation offloading in multi-tier multi-access edge computing systems: a particle swarm optimization approach. Appl. Sci. 10(1), 203 (2019). https://doi.org/10.3390/app10010203
Wang, Q., Mao, Y., Wang, Y., & Wang, L. Computation Tasks Offloading Scheme Based on Multi-cloudlet Collaboration for Edge Computing. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). https://doi.org/10.1109/cbd.2019.00067 (2019)
Crutcher, A., Koch, C., Coleman, K., Patman, J., Esposito, F., & Calyam, P. Hyperprofile-Based Computation Offloading for Mobile Edge Networks. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). https://doi.org/10.1109/mass.2017.91 (2017)
Yadav, A., Jana, P. K., Tiwari, S., & Gaur, A. Clustering-Based Energy Efficient Task Offloading for Sustainable Fog Computing. IEEE Transactions on Sustainable Computing. (2022)
Hu, H., Zhang, J., Jiang, Y., Li, Z., Chen, Q., Zhang, J.: Computation offloading analysis in clustered fog radio access networks with repulsion. IEEE Trans. Veh. Technol. 70(10), 10804–10819 (2021)
Qayyum, T., Trabelsi, Z., Malik, A., Hayawi, K.: Trajectory design for uav-based data collection using clustering model in smart farming. Sensors 22(1), 37 (2021)
Helles, F., Holten-Andersen, P., Wichmann, L. (eds.): Multiple Use of Forests and Other Natural Resources: Aspects of Theory and Application, vol. 61. Springer Science & Business Media (2001)
Jia, M., & Liang, W. Delay-Sensitive Multiplayer Augmented Reality Game Planning in Mobile Edge Computing. Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. https://doi.org/10.1145/3242102.3242129 (2018)
Wang, D., Liu, Z., Wang, X., Lan, Y.: Mobility-aware task offloading and migration schemes in fog computing networks. IEEE Access 7, 43356–43368 (2019). https://doi.org/10.1109/access.2019.2908263
Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C., Fortino, G.: Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access 8, 54074–54084 (2020)
Vemireddy, S., Rout, R.R.: Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput. Netw. 199, 108463 (2021)
Yang, Y., Chen, X., Chen, Y. and Li, Z., August. Green-oriented offloading and resource allocation by reinforcement learning in MEC. In 2019 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp. 378–382). IEEE. (2019)
Li, X.: A computing offloading resource allocation scheme using deep reinforcement learning in mobile edge computing systems. J. Grid Comput. 19(3), 1–12 (2021)
Wang, K., Wang, X., Liu, X.: A high reliable computing offloading strategy using deep reinforcement learning for iovs in edge computing. J. Grid Comput. 19(2), 1–15 (2021)
Yang, G., Hou, L., Cheng, H., He, X., He, D., Chan, S.: Computation offloading time optimisation via Q-learning in opportunistic edge computing. IET Commun. 14(21), 3898–3906 (2020)
Liu, P., He, H., Fu, T., Lu, H., Alelaiwi, A., Wasi, M.W.I.: Task offloading optimization of cruising UAV with fixed trajectory. Comput. Netw. 199, 108397 (2021)
Fakhfakh, E., Hamouda, S.: Optimised Q-learning for WiFi offloading in dense cellular networks. IET Commun. 11(15), 2380–2385 (2017)
Van Hasselt, H., Guez, A. and Silver, D., March. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence Vol. 30, No. 1. (2016)
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Zhang, C., Zheng, Z.: Task migration for mobile edge computing using deep reinforcement learning. Futur. Gener. Comput. Syst. 96, 111–118 (2019). https://doi.org/10.1016/j.future.2019.01.059
Schaul, T., Quan, J., Antonoglou, I. and Silver, D., 2015. Prioritized experience replay. arXiv preprint arXiv:1511.05952.
Yan, P., Choudhury, S.: Deep Q-learning enabled joint optimization of mobile edge computing multi-level task offloading. Comput. Commun. 180, 271–283 (2021)
Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. Performance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). https://doi.org/10.1109/vtcfall.2018.8690980 (2018)
Laroui, M., Ibn-Khedher, H., Ali Cherif, M., Moungla, H., Afifi, H., Kamel, A.E.: SO-VMEC: Service offloading in virtual mobile edge computing using deep reinforcement learning. Trans. Emerg. Telecommun. Technol. (2021). https://doi.org/10.1002/ett.4211
Wang, J., Wang, L.: Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-021-03458-5
Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, 12 (1999)
Dong, H., Dong, H., Ding, Z., Zhang, S., Chang: Deep reinforcement learning. Springer, Singapore (2020)
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)
Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Advances in Neural Information Processing Systems, 12 (1999)
Wang, J.X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J.Z., Munos, R., Blundell, C., Kumaran, D. and Botvinick, M., 2016. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763. (1999)
Meng, H., Chao, D., & Guo, Q. Deep Reinforcement Learning Based Task Offloading Algorithm for Mobile-edge Computing Systems. Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence - ICMAI 2019. https://doi.org/10.1145/3325730.3325732 (2019)
Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., Zhuang, W.: Learning-Based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019). https://doi.org/10.1109/tvt.2018.2890685
Huang, L., Feng, X., Qian, L., Wu, Y.: Deep reinforcement learning-based task offloading and resource allocation for mobile edge computing. Mach. Learni. Intell. Commun. (2018). https://doi.org/10.1007/978-3-030-00557-3_4
Zeng, D., Gu, L., Pan, S., Cai, J., Guo, S.: Resource management at the network edge: a deep reinforcement learning approach. IEEE Netw. 33(3), 26–33 (2019). https://doi.org/10.1109/mnet.2019.1800386
Chen, Z., Wang, X.: Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach. EURASIP J. Wirel. Commun. Netw. (2020). https://doi.org/10.1186/s13638-020-01801-6
Li, J., Gao, H., Lv, T., & Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. 2018 IEEE Wireless Communications and Networking Conference (WCNC). https://doi.org/10.1109/wcnc.2018.8377343 (2018)
Huang, L., Feng, X., Zhang, C., Qian, L., Wu, Y.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 5(1), 10–17 (2019). https://doi.org/10.1016/j.dcan.2018.10.003
Eom, H., Figueiredo, R., Cai, H., Zhang, Y., & Huang, G. MALMOS: Machine Learning-Based Mobile Offloading Scheduler with Online Training. 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering. https://doi.org/10.1109/mobilecloud.2015.19 (2015)
Li, L., Siew, M., & Quek, T. Q. Learning-Based Pricing for Privacy-Preserving Job Offloading in Mobile Edge Computing. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/icassp.2019.8682862 (2019)
Liang, F., Yu, W., Liu, X., Griffith, D., Golmie, N.: Toward edge-based deep learning in industrial internet of things. IEEE Internet Things J. 7(5), 4329–4341 (2020). https://doi.org/10.1109/jiot.2019.2963635
Zhao, X., Yang, K., Chen, Q., Peng, D., Jiang, H., Xu, X., Shuang, X.: Deep learning based mobile data offloading in mobile edge computing systems. Futur. Gener. Comput. Syst. 99, 346–355 (2019). https://doi.org/10.1016/j.future.2019.04.039
Ran, X., Chen, H., Liu, Z., Chen, J.: Delivering deep learning to mobile devices via offloading. Proc. Workshop Virtual Reality Augment. Reality Netw. (2017). https://doi.org/10.1145/3097895.3097903
Dai, P., Liu, K., Wu, X., Xing, H., Yu, Z., & Lee, V. C. S. A Learning Algorithm for Real-Time Service in Vehicular Networks with Mobile-Edge Computing. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). https://doi.org/10.1109/icc.2019.8761190 (2019)
Kao, Y.H., Krishnamachari, B., Ra, M.R., Bai, F.: Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans. Mob. Comput. 16(11), 3056–3069 (2017). https://doi.org/10.1109/tmc.2017.2679712
Sun, Y., Zhou, S., Xu, J.: EMM: energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE J. Sel. Areas Commun. 35(11), 2637–2646 (2017). https://doi.org/10.1109/jsac.2017.2760160
Zhang, F., Ge, J., Wong, C., Li, C., Chen, X., Zhang, S., Luo, B., Zhang, H., Chang, V.: Online learning offloading framework for heterogeneous mobile edge computing system. J. Parallel Distrib. Comput. 128, 167–183 (2019). https://doi.org/10.1016/j.jpdc.2019.02.003
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press, Cambridge (2018)
Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Softw.: Prac. Exp. 47(9), 1275–1296 (2017)
Buyya, R., Ranjan, R., & Calheiros, R. N. (June). Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In 2009 international conference on high performance computing & simulation (pp. 1–11). IEEE. (2009)
Rezvani, M. H., & Khabiri, D. (November). Gamers' Behaviour and Communication Analysis in Massively Multiplayer Online Games: A Survey. In 2018 2nd national and 1st international digital games research conference: Trends, technologies, and applications (DGRC) (pp. 61–69). IEEE. (2018)
Fathy, F., Mansour, Y., Sabry, H., Refat, M., Wagdy, A.: Virtual reality and machine learning for predicting visual attention in a daylit exhibition space: a proof of concept. Ain Shams Eng. J. 14(6), 102098 (2023)
Yang, M., Li, Y., Hu, P., Bai, J., Lv, J., Peng, X.: Robust multi-view clustering with incomplete information. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 1055–1069 (2022)
Kharitonov, N.A., Maximov, A.G. and Tulupyev, A.L., Algebraic Bayesian networks: Naïve frequentist approach to local machine learning based on imperfect information from social media and expert estimates. In Artificial Intelligence: 17th Russian Conference, RCAI 2019, Ulyanovsk, Russia, October 21–25, 2019, Proceedings 17 (pp. 234–244). Springer International Publishing. (2019)
Zhao, Y., Smidts, C.: Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states. Reliab. Eng. Syst. Saf. 224, 108541 (2022)
Wen, J., Liu, C., Deng, S., Liu, Y., Fei, L., Yan, K., Xu, Y.: Deep double incomplete multi-view multi-label learning with incomplete labels and missing views. IEEE Trans. Neural Netw. Learn. Systems (2023). https://doi.org/10.1109/TNNLS.2023.3260349
Khoobkar, M.H., Fooladi, M.D.T., Rezvani, M.H., Sadeghi, M.M.G.: Joint optimization of delay and energy in partial offloading using dual-population replicator dynamics. Expert Syst. Appl. 216, 119417 (2023)
Bui, V.H., Hussain, A., Su, W.: A dynamic internal trading price strategy for networked microgrids: a deep reinforcement learning-based game-theoretic approach. IEEE Trans. Smart Grid 13(5), 3408–3421 (2022)
Cao, K., Xie, L.: Game-theoretic inverse reinforcement learning: a differential pontryagin’s maximum principle approach. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3148376
Yilmaz, T., Ulusoy, Ö.: Misinformation propagation in online social networks: game theoretic and reinforcement learning approaches. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3208793
Teymoori, P. and Boukerche, A., May. Dynamic Multi-user Computation Offloading for Mobile Edge Computing using Game Theory and Deep Reinforcement Learning. In ICC 2022-IEEE International Conference on Communications pp. 1930–1935. IEEE. (2022)
Mustafa, E., Shuja, J., Bilal, K., Mustafa, S., Maqsood, T., Rehman, F., Khan, A.U.R.: Reinforcement learning for intelligent online computation offloading in wireless powered edge networks. Clust. Comput. 26(2), 1053–1062 (2023)
Wang, Y., Li, T., Liu, M., Li, C., Wang, H.: STSIIML: study on token shuffling under incomplete information based on machine learning. Int. J. Intell. Syst. (2022). https://doi.org/10.1002/int.23033
Kumar, N., Singh, A., Handa, A. and Shukla, S.K., Detecting malicious accounts on the Ethereum blockchain with supervised learning. In Cyber Security Cryptography and Machine Learning: Fourth International Symposium, CSCML 2020, Be'er Sheva, Israel, July 2–3, 2020, Proceedings 4 (pp. 94–109). Springer International Publishing. (2020)
Michalski, R., Dziubałtowska, D., Macek, P.: Revealing the character of nodes in a blockchain with supervised learning. IEEE Access 8, 109639–109647 (2020)
Lakhan, A., Mohammed, M.A., Ibrahim, D.A., Kadry, S., Abdulkareem, K.H.: Its based on deep graph convolutional fraud detection network blockchain-enabled fog-cloud. IEEE Trans. Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2022.3147852
Felizardo, L.K., Paiva, F.C.L., de Vita Graves, C., Matsumoto, E.Y., Costa, A.H.R., Del-Moral-Hernandez, E., Brandimarte, P.: Outperforming algorithmic trading reinforcement learning systems: a supervised approach to the cryptocurrency market. Expert Syst. Appl. 202, 117259 (2022)
Martin, K., Rahouti, M., Ayyash, M., Alsmadi, I.: Anomaly detection in blockchain using network representation and machine learning. Secur. Priv. 5(2), e192 (2022)
Jayanetti, A., Halgamuge, S., Buyya, R.: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge-cloud computing environments. Futur. Gener. Comput. Syst. (2022). https://doi.org/10.1016/j.future.2022.06.012
Yang, H., Li, G., Sun, G., Chen, J., Meng, X., Yu, H., Xu, W., Qu, Q., Ying, X.: Dispersed computing for tactical edge in future wars: vision, architecture, and challenges. Wirel. Commun. Mob. Comput. 2021, 1–31 (2021). https://doi.org/10.1155/2021/8899186
Li, K., Wang, X., Ni, Q., Huang, M.: Entropy-based reinforcement learning for computation offloading service in software-defined multi-access edge computing. Futur. Gener. Comput. Syst. 136, 241–251 (2022). https://doi.org/10.1016/j.future.2022.06.002
Rashid, Z. N., Zeebaree, S. R. M., Zebari, R. R., Ahmed, S. H., Shukur, H. M., & Alkhayyat, A. Distributed and Parallel Computing System Using Single-Client Multi-Hash Multi-Server Multi-Thread. 2021 1st Babylon International Conference on Information Technology and Science (BICITS). https://doi.org/10.1109/bicits51482.2021.9509872 (2021)
AlMansour, N., Allah, N.M.: April. A survey of scheduling algorithms in cloud computing. In: 2019 International Conference on Computer and Information Sciences (ICCIS), pp. 1–6. IEEE, April 2019
Zhang, W., Yin, S., Yang, C., Luo, Z., & Huang, S. arallel Computation Offloading Between MEC Servers with Metro Optical Network. 26th Optoelectronics and Communications Conference. https://doi.org/10.1364/oecc.2021.t2a.4 (2021).
Liang, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2019). https://doi.org/10.1109/jiot.2018.2872122
Zaman, S.K.U., Jehangiri, A.I., Maqsood, T., Haq, N.U., Umar, A.I., Shuja, J., Ahmad, Z., Dhaou, I.B., Alsharekh, M.F.: LiMPO: lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput. 26(1), 99–117 (2023)
Nguyen, Q.N., Liu, J., Pan, Z., Benkacem, I., Tsuda, T., Taleb, T., Shimamoto, S., Sato, T.: PPCS: a progressive popularity-aware caching scheme for edge-based cache redundancy avoidance in information-centric networks. Sensors 19(3), 694 (2019). https://doi.org/10.3390/s19030694
Li, B., Peng, Z., Hou, P., He, M., Anisetti, M., Jeon, G.: Reliability and capability based computation offloading strategy for vehicular ad hoc clouds. J. Cloud Comput. (2019). https://doi.org/10.1186/s13677-019-0147-6
Ometov, A., Kozyrev, D., Rykov, V., Andreev, S., Gaidamaka, Y., Koucheryavy, Y.: Reliability-centric analysis of offloaded computation in cooperative wearable applications. Wirel. Commun. Mob. Comput. 2017, 1–15 (2017). https://doi.org/10.1155/2017/9625687
Sheikh Sofla, M., Haghi Kashani, M., Mahdipour, E., Faghih Mirzaee, R.: Towards effective offloading mechanisms in fog computing. Multime. Tools Appl. 81(2), 1997–2042 (2021). https://doi.org/10.1007/s11042-021-11423-9
Funding
The authors did not receive support from any organization for the submitted work.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study’s conception and design. ST-a performed data collection and analysis. Project navigation and checking the validity of results were done by AMEM and MHR. ST-a wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. This manuscript reports the scientific findings of an academic Ph.D. thesis presented by Mrs. ST-a as the student and AMEM and MHR as thesis supervisors.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Ethical approval and consent to participate
Not Applicable.
Consent for publication
Not Applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix
See Table 8
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Taheri-abed, S., Eftekhari Moghadam, A.M. & Rezvani, M.H. Machine learning-based computation offloading in edge and fog: a systematic review. Cluster Comput 26, 3113–3144 (2023). https://doi.org/10.1007/s10586-023-04100-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-023-04100-z