Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DITRA: an efficient event-driven multi-objective optimization algorithm for bandwidth allocation in IoT environments

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) technology has facilitated different human-related activities and, therefore, has extended to a wide range of applications. However, these networks have the limited resources that must be utilized in an efficient manner. Hence, various studies have introduced several methods and algorithms for better managing these resources. Although these approaches produce acceptable solutions, their performance still needs improvement because of an increasing number of IoT devices and application services. To address such a limitation, the present study proposed a novel IoT environments-specific bandwidth allocation method, which dynamically distributes the wireless bandwidth among the devices according to their heterogeneous nature and the existence of various traffic services. To this end, the Trader metaheuristic algorithm was developed for the discrete problems and formulated as a multi-objective algorithm. To evaluate the performance of the proposed method, it was applied to the six gold standard datasets generated based on the Poisson distribution. The outcomes indicated that the proposed approach surpasses the other introduced state-of-the-art methods in terms of the service success rate by 6.32%, network throughput by 5.79%, and resource efficiency by 3.13%. The results also showed that based on the different statistical criteria, the proposed discrete metaheuristic algorithm yields better outcomes compared to the other efficient algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the implemented source codes are freely available at https://github.com/LABCTB-Soft/DOA.git

Abbreviations

AHRA:

Auction-based Hierarchical Resource Allocation

AP:

Access Point

ASV:

Asymptotic Shapley Value

BS:

Base Station

BW:

Bandwidth

CDR:

Constant Data Rate

CI:

Confidence Interval

CS:

Candidate Solution

DITRA:

DIscrete Trader-based Resource Allocation

GA:

Genetic Algorithm

IoT:

Internet of Things

Master_CS:

Master Candidate Solution

OF:

Objective Function

QoS:

Quality of Service

RA:

Resource Allocation

SHRA:

Stackelberg-based Hierarchical Resource Allocation

Slave_CS:

Slave Candidate Solution

STD:

Standard Deviation

VCR:

Variable Data Rate

WCC:

World Competitive Contents

WORA:

Whale Optimization Resource Allocation

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Google Scholar 

  2. Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things—a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

    Google Scholar 

  3. Chowdhury, A., Raut, S.A.: A survey study on internet of things resource management. J. Netw. Comput. Appl. 120, 42–60 (2018)

    Google Scholar 

  4. Kassab, W.A., Darabkh, K.A.: A-Z survey of internet of things: architectures, protocols, applications, recent advances, future directions and recommendations. J. Netw. Comput. Appl. 163, 102663 (2020)

    Google Scholar 

  5. Al-Fuqaha, A., et al.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Google Scholar 

  6. Endo, P.T., et al.: Resource allocation for distributed cloud: concepts and research challenges. IEEE Netw. 25(4), 42–46 (2011)

    Google Scholar 

  7. Guinard, D., et al.: Interacting with the SOA-based internet of things: discovery, query, selection, and on-demand provisioning of web services. IEEE Trans. Serv. Comput. 3(3), 223–235 (2010)

    Google Scholar 

  8. Aazam, M., et al.: IoT resource estimation challenges and modeling in fog. In: Rahmani, A.M., Liljeberg, P., Preden, J.S., Jantsch, A. (eds.) Fog computing in the internet of things, pp. 17–31. Springer, Berlin (2018)

    Google Scholar 

  9. Luo, S., Ren, B.: The monitoring and managing application of cloud computing based on internet of things. Comput. Methods Progr. Biomed. 130, 154–161 (2016)

    Google Scholar 

  10. Delicato, F.C., Pires, P.F., Batista, T.: Resource management for internet of things. Springer, Berlin (2017)

    Google Scholar 

  11. Dai, X., Gui, J.: Joint access and backhaul resource allocation for D2D-assisted dense mmWave cellular networks. Comput. Netw. 183, 107602 (2020)

    Google Scholar 

  12. Nauman, A., et al.: Multimedia internet of things: a comprehensive survey. IEEE Access 8, 8202–8250 (2020)

    Google Scholar 

  13. Li, L., Li, S., Zhao, S.: QoS-aware scheduling of services-oriented internet of things. IEEE Trans. Ind. Inform. 10(2), 1497–1505 (2014)

    Google Scholar 

  14. White, G., Nallur, V., Clarke, S.: Quality of service approaches in IoT: a systematic mapping. J. Syst. Softw. 132, 186–203 (2017)

    Google Scholar 

  15. Wang, J., et al.: Distributed Q-learning aided heterogeneous network association for energy-efficient IIoT. IEEE Trans. Ind. Inform. 16(4), 2756–2764 (2020)

    Google Scholar 

  16. Tsai, C.-W.: SEIRA: an effective algorithm for IoT resource allocation problem. Comput. Commun. 119, 156–166 (2018)

    Google Scholar 

  17. Duan, R., et al.: Resource allocation for multi-UAV aided IoT NOMA uplink transmission systems. IEEE Internet Things J. 6(4), 7025–7037 (2019)

    Google Scholar 

  18. Masoudi-Sobhanzadeh, Y., et al.: Trader as a new optimization algorithm predicts drug-target interactions efficiently. Sci. Rep. 9(1), 9348 (2019)

    Google Scholar 

  19. Mebrek, A. and A. Yassine, Intelligent resource allocation and task offloading model for IoT applications in fog networks: a game-theoretic approach. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021: p. 1–15

  20. Yan, S., Peng, M., Cao, X.: A game theory approach for joint access selection and resource allocation in UAV assisted IoT communication networks. IEEE Internet Things J. 6(2), 1663–1674 (2019)

    Google Scholar 

  21. Arisdakessian, S., et al.: FoGMatch: an intelligent multi-criteria IoT-Fog scheduling approach using game theory. IEEE/ACM Trans. Netw. 28(4), 1779–1789 (2020)

    Google Scholar 

  22. Kim, S.: Asymptotic shapley value based resource allocation scheme for IoT services. Comput. Netw. 100, 55–63 (2016)

    Google Scholar 

  23. Liang, L., Feng, G., Jia, Y.: Game-theoretic hierarchical resource allocation for heterogeneous relay networks. IEEE Trans. Veh. Technol. 64(4), 1480–1492 (2015)

    Google Scholar 

  24. Tang, W., Jain, R.: Hierarchical auction mechanisms for network resource allocation. IEEE J. Sel. Areas Commun. 30(11), 2117–2125 (2012)

    Google Scholar 

  25. Li, X., et al.: A cooperative resource allocation model for IoT applications in mobile edge computing. Comput. Commun. 173, 183–191 (2021)

    Google Scholar 

  26. Chu, Z., et al.: Resource allocation for IRS-assisted wireless-powered FDMA IoT networks. IEEE Internet Things J. 9(11), 8774–8785 (2022)

    Google Scholar 

  27. Tran, D.H., et al.: UAV relay-assisted emergency communications in IoT networks: resource allocation and trajectory optimization. IEEE Trans. Wirel. Commun. 21(3), 1621–1637 (2022)

    Google Scholar 

  28. Zhang, Q., et al.: Many-to-many matching-theory-based dynamic bandwidth allocation for UAVs. IEEE Internet Things J. 8(12), 9995–10009 (2021)

    Google Scholar 

  29. Chen, D., et al.: Resource cube: multi-virtual resource management for integrated satellite-terrestrial industrial IoT networks. IEEE Trans. Veh. Technol. 69(10), 11963–11974 (2020)

    Google Scholar 

  30. Liu, X., et al.: Resource allocation in wireless powered IoT networks. IEEE Internet Things J. 6(3), 4935–4945 (2019)

    Google Scholar 

  31. Chang, Z., et al.: Dynamic resource allocation and computation offloading for IoT fog computing system. IEEE Trans. Ind. Inform. 17(5), 3348–3357 (2021)

    Google Scholar 

  32. Librino, F., Santi, P.: Resource allocation and sharing in URLLC for IoT applications using shareability graphs. IEEE Internet Things J. 7(10), 10511–10526 (2020)

    Google Scholar 

  33. Feng, L., et al.: Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services. IEEE Access 8, 34538–34551 (2020)

    Google Scholar 

  34. Ni, L., et al.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4(5), 1216–1228 (2017)

    MathSciNet  Google Scholar 

  35. Souravlas, S., Katsavounis, S., Anastasiadou, S.: On modeling and simulation of resource allocation policies in cloud computing using colored petri nets. Appl. Sci. 10(16), 5644 (2020)

    Google Scholar 

  36. da Mata, S.H., Guardieiro, P.R.: Resource allocation for the LTE uplink based on genetic algorithms in mixed traffic environments. Comput. Commun. 107, 125–137 (2017)

    Google Scholar 

  37. Rankothge, W., et al.: Optimizing resource allocation for virtualized network functions in a cloud center using genetic algorithms. IEEE Trans. Netw. Serv. Manage. 14(2), 343–356 (2017)

    Google Scholar 

  38. Mukherjee, A., et al.: ADAI and adaptive PSO-based resource allocation for wireless sensor networks. IEEE Access 7, 131163–131171 (2019)

    Google Scholar 

  39. Li, J.: Resource optimization scheduling and allocation for hierarchical distributed cloud service system in smart city. Futur. Gener. Comput. Syst. 107, 247–256 (2020)

    Google Scholar 

  40. Chaharsooghi, S.K., Meimand Kermani, A.H.: An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP). Appl. Math. Comput. 200(1), 167–177 (2008)

    MathSciNet  Google Scholar 

  41. Abdullahi, M., Ngadi, M.A., Abdulhamid, S.I.M.: Symbiotic organism search optimization based task scheduling in cloud computing environment. Future Gener. Comput. Syst. 56, 640–650 (2016)

    Google Scholar 

  42. Sangaiah, A.K., et al.: IoT resource allocation and optimization based on heuristic algorithm. Sensors 20(2), 539 (2020)

    Google Scholar 

  43. Abdel-Basset, M., et al.: Energy-aware metaheuristic algorithm for industrial-internet-of-things task scheduling problems in fog computing applications. IEEE Internet Things J. 8(16), 12638–12649 (2021)

    Google Scholar 

  44. Jafari, V., Rezvani, M.H.: Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II metaheuristic algorithm. J. Ambient Intell. Human. Comput. (2021). https://doi.org/10.1007/s12652-021-03388-2

    Article  Google Scholar 

  45. Nematollahi, M., Ghaffari, A., Mirzaei, A.: Task and resource allocation in the internet of things based on an improved version of the moth-flame optimization algorithm. Clust. Comput. (2023). https://doi.org/10.1007/s10586-023-04041-7

    Article  Google Scholar 

  46. Imtiaz, H.H., Tang, S.: Multi-task partial offloading with relay and adaptive bandwidth allocation for the MEC-assisted IoT. Sensors (2023). https://doi.org/10.3390/s23010190

    Article  Google Scholar 

  47. Mirmohseni, S.M., Tang, C., Javadpour, A.: Using markov learning utilization model for resource allocation in cloud of thing network. Wirel. Pers. Commun. 115(1), 653–677 (2020)

    Google Scholar 

  48. Ahsan, W., et al.: Resource allocation in uplink NOMA-IoT networks: a reinforcement-learning approach. IEEE Trans. Wirel. Commun. 20(8), 5083–5098 (2021)

    Google Scholar 

  49. Xiong, X., et al.: Resource allocation based on deep reinforcement learning in iot edge computing. IEEE J. Sel. Areas Commun. 38(6), 1133–1146 (2020)

    Google Scholar 

  50. Zhang, F., et al.: Joint optimization of cooperative edge caching and radio resource allocation in 5G-enabled massive IoT networks. IEEE Internet Things J. 8(18), 14156–14170 (2021)

    Google Scholar 

  51. Abrahão, D.C., Vieira, F.H.T.: Resource allocation algorithm for LTE networks using fuzzy based adaptive priority and effective bandwidth estimation. Wirel. Netw. 24(2), 423–437 (2018)

    Google Scholar 

  52. Shi, Y., Xia, Y., Gao, Y.: Joint gateway selection and resource allocation for cross-tier communication in space-air-ground integrated IoT networks. IEEE Access 9, 4303–4314 (2021)

    Google Scholar 

  53. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57, 1143–1160 (2006)

    Google Scholar 

  54. Moschakis, I.A., Karatza, H.D.: Towards scheduling for internet-of-things applications on clouds: a simulated annealing approach. Concurr. Comput. Pract. Exp. 27(8), 1886–1899 (2015)

    Google Scholar 

  55. Abuajwa, O., Roslee, M.B., Yusoff, Z.B.: Simulated annealing for resource allocation in downlink NOMA systems in 5G networks. Appl. Sci. 11(10), 4592 (2021)

    Google Scholar 

  56. Ji, X., et al.: Joint device selection and bandwidth allocation for cost-efficient federated learning in industrial internet of things. IEEE Internet of Things Journal, (2023)

  57. Tang, S., et al.: Computational intelligence and deep learning for next-generation edge-enabled industrial IoT. IEEE Transactions on Network Science and Engineering, 1–13 (2022)

  58. Madni, S.H.H., et al.: Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust. Comput. 20(3), 2489–2533 (2017)

    Google Scholar 

  59. Ghanbari, Z., et al.: Resource allocation mechanisms and approaches on the Internet of Things. Clust. Comput. 22(4), 1253–1282 (2019)

    Google Scholar 

  60. Li, X., Xu, L.D.: A review of internet of things—resource allocation. IEEE Internet Things J. 8(11), 8657–8666 (2021)

    Google Scholar 

  61. Rouhifar, M., Hedayati, A., Aghazarian, V.: Bandwidth allocation methods on internet of things: an analytical survey. Int. J. Wirel. Mobile Comput. 23(1), 88–100 (2022)

    Google Scholar 

  62. Masoudi-Sobhanzadeh, Y., Masoudi-Nejad, A.: Synthetic repurposing of drugs against hypertension: a datamining method based on association rules and a novel discrete algorithm. BMC Bioinform. 21(1), 313 (2020)

    Google Scholar 

  63. Abdi, Y., Feizi-Derakhshi, M.-R.: Hybrid multi-objective evolutionary algorithm based on search manager framework for big data optimization problems. Appl. Soft Comput. 87, 105991 (2020)

    Google Scholar 

  64. Masoudi-Sobhanzadeh, Y., et al.: Discovering driver nodes in chronic kidney disease-related networks using trader as a newly developed algorithm. Comput. Biol. Med. 148, 105892 (2022)

    Google Scholar 

  65. Luo, S., et al.: HFEL: joint edge association and resource allocation for cost-efficient hierarchical federated edge learning. IEEE Trans. Wirel. Commun. 19(10), 6535–6548 (2020)

    Google Scholar 

  66. Liu, X., et al.: Resource allocation with edge computing in IoT networks via machine learning. IEEE Internet Things J. 7(4), 3415–3426 (2020)

    Google Scholar 

  67. Shah-Mansouri, H., Wong, V.W.S.: Hierarchical fog-cloud computing for IoT systems: a computation offloading game. IEEE Internet Things J. 5(4), 3246–3257 (2018)

    Google Scholar 

  68. Geetha, R., Parthasarathy, V.: An advanced artificial intelligence technique for resource allocation by investigating and scheduling parallel-distributed request/response handling. J. Ambient. Intell. Humaniz. Comput. 12(7), 6899–6909 (2021)

    Google Scholar 

  69. Li, L., et al.: Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7, 9912–9925 (2019)

    Google Scholar 

  70. Sing, R., et al.: A whale optimization algorithm based resource allocation scheme for cloud-fog based iot applications. Electronics 11(19), 3207 (2022)

    Google Scholar 

  71. Osman, M.S., Abo-Sinna, M.A., Mousa, A.A.: An effective genetic algorithm approach to multiobjective resource allocation problems (MORAPs). Appl. Math. Comput. 163(2), 755–768 (2005)

    MathSciNet  Google Scholar 

  72. Masoudi-Sobhanzadeh, Y., Motieghader, H.: World Competitive Contests (WCC) algorithm: a novel intelligent optimization algorithm for biological and non-biological problems. Inform. Med. Unlocked 3, 15–28 (2016)

    Google Scholar 

  73. Črepinšek, M., et al.: Tuning multi-objective evolutionary algorithms on different sized problem sets. Mathematics 7(9), 824 (2019)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MR designed the project, prepared the manuscript, and performed the analysis. AH and VA reviewed the manuscript and supervised the project.

Corresponding author

Correspondence to Alireza Hedayati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhifar, M., Hedayati, A. & Aghazarian, V. DITRA: an efficient event-driven multi-objective optimization algorithm for bandwidth allocation in IoT environments. Cluster Comput 27, 5143–5163 (2024). https://doi.org/10.1007/s10586-023-04214-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04214-4

Keywords