Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A metaheuristic approach based on coronavirus herd immunity optimiser for breast cancer diagnosis

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

As one of the important concepts in epidemiology, herd immunity was recommended to control the COVID-19 pandemic. Inspired by this technique, the Coronavirus Herd Immunity Optimiser has recently been introduced, demonstrating promising results in addressing optimisation problems. This particular algorithm has been utilised to address optimisation problems widely; However, there is room for enhancement in its performance by making modifications to its parameters. This paper aims to improve the Coronavirus Herd Immunity Optimisation algorithm to employ it in addressing breast cancer diagnosis problem through feature selection. For this purpose, the algorithm was discretised after the improvements were made. The Opposition-Based Learning approach was applied to balance the exploration and exploitation stages to enhance performance. The resulting algorithm was employed in the diagnosis of breast cancer, and its performance was evaluated on ten benchmark functions. According to the simulation results, it demonstrates superior performance in comparison with other well-known approaches of the similar nature. The results demonstrate that the new approach performs well in diagnosing breast cancer with high accuracy and less computational complexity and can address a variety of real-world optimisation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Algorithm 2
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Al-Betar, M.A., et al.: Coronavirus herd immunity optimiser (CHIO). Neural Comput. Appl. 33, 5011–5042 (2021)

    Google Scholar 

  2. Ghafori, S., Gharehchopogh, F.S.: Advances in spotted hyena optimiser: a comprehensive survey. Arch. Comput. Methods Eng. 29, 1–22 (2021)

    Google Scholar 

  3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

    Google Scholar 

  4. Pardalos, P.M., Mavridou, T., Xue, J.: The graph coloring problem: a bibliographic survey, in handbook of combinatorial optimisation, pp. 1077–1141. Springer, Berlin (1998)

    Google Scholar 

  5. Abdollahzadeh, B., Gharehchopogh, F.S.: A multi-objective optimisation algorithm for feature selection problems. Eng. Comput. 38, 1–19 (2021)

    Google Scholar 

  6. Mafarja, M., Mirjalili, S.: Whale optimisation approaches for wrapper feature selection. Appl. Soft Comput. 62, 441–453 (2018)

    Google Scholar 

  7. Sayed, S.A.-F., Nabil, E., Badr, A.: A binary clonal flower pollination algorithm for feature selection. Pattern Recognit. Lett. 77, 21–27 (2016)

    Google Scholar 

  8. Benyamin, A., Farhad, S.G., Saeid, B.: Discrete farmland fertility optimisation algorithm with metropolis acceptance criterion for traveling salesman problems. Int. J. Intell. Syst. 36(3), 1270–1303 (2021)

    Google Scholar 

  9. Hosseinalipour, A., et al.: Toward text psychology analysis using social spider optimisation algorithm  Concurr. Comput.: Pract. Exp. 33, e6325 (2021)

    Google Scholar 

  10. Gharehchopogh, F.S., Maleki, I., Dizaji, Z.A.: Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evol. Intel. 15, 1–32 (2021)

    Google Scholar 

  11. Mohmmadzadeh, H., Gharehchopogh, F.S.: An efficient binary chaotic symbiotic organisms search algorithm approaches for feature selection problems. J. Supercomput. 78, 9102–9144 (2021)

    Google Scholar 

  12. Hosseinalipour, A., et al.: A novel binary farmland fertility algorithm for feature selection in analysis of the text psychology. Appl. Intell. 51, 4824–4859 (2021)

    Google Scholar 

  13. Dong, H., et al.: A novel hybrid genetic algorithm with granular information for feature selection and optimisation. Appl. Soft Comput. 65, 33–46 (2018)

    Google Scholar 

  14. Stephan, P., et al.: A hybrid artificial bee colony with whale optimisation algorithm for improved breast cancer diagnosis. Neural Comput. Appl. 33(20), 13667–13691 (2021)

    Google Scholar 

  15. Weaver, S.C., Reisen, W.K.: Present and future arboviral threats. Antiviral Res. 85(2), 328–345 (2010)

    Google Scholar 

  16. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimiser. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  17. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning  Mach. Learn. (1988). https://doi.org/10.1007/BF00113894

    Article  Google Scholar 

  18. Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT Press, Cambridge (1992)

    Google Scholar 

  19. Simon, D.: Biogeography-based optimisation. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Google Scholar 

  20. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimisation inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation. IEEE (2007)

  21. Dorigo, M., Di, G., Caro: Ant colony optimisation: a new meta-heuristic. In Proceedings of the congress on evolutionary computation-CEC99(Cat. No. 99TH8406). IEEE. (1999)

  22. Wang, B., Jin, X., Cheng, B.: Lion pride optimiser: an optimisation algorithm inspired by lion pride behavior. Sci. China Inform. Sci. 55(10), 2369–2389 (2012)

    Google Scholar 

  23. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE (2009)

  24. Arora, S., Anand, P.: Binary butterfly optimisation approaches for feature selection. Expert Syst. Appl. 116, 147–160 (2019)

    Google Scholar 

  25. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimisation. Eng. Comput. 29, 464–483 (2012)

    Google Scholar 

  26. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary ant lion approaches for feature selection. Neurocomputing. 213, 54–65 (2016)

    Google Scholar 

  27. Emine, B., Ülker, E.: An efficient binary social spider algorithm for feature selection problem. Expert Syst. Appl. 146, 113185 (2020)

    Google Scholar 

  28. Mafarja, M.M., et al.: Binary dragonfly algorithm for feature selection. in New Trends in Computing Sciences (ICTCS), 2017 International Conference on. IEEE. (2017)

  29. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimisation approaches for feature selection. Neurocomputing. 172, 371–381 (2016)

    Google Scholar 

  30. Tayarani-N, M.-H., Akbarzadeh, M.: Magnetic optimisation algorithms a new synthesis. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE (2008)

  31. Pan, W.-T.: A new fruit fly optimisation algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26, 69–74 (2012)

    Google Scholar 

  32. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimisation algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    MathSciNet  Google Scholar 

  33. Askarzadeh, A.: Bird mating optimiser: an optimisation algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1213–1228 (2014)

    MathSciNet  Google Scholar 

  34. Yang, X.-S.: Nature-inspired metaheuristic algorithms. Luniver Press, Bristol (2010)

    Google Scholar 

  35. Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: African vultures optimisation algorithm: a new nature-inspired metaheuristic algorithm for global optimisation problems. Comput. Ind. Eng. 158, 107408 (2021)

    Google Scholar 

  36. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimisation problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Google Scholar 

  37. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimisation simulated annealing. Science 220(4598), 671–680 (1983)

    MathSciNet  Google Scholar 

  38. Du, H., Wu, X., Zhuang, J.: Small-world optimisation algorithm for function optimisation. In International conference on natural computation. Springer. (2006)

  39. Eskandar, H., et al.: Water cycle algorithm–a novel metaheuristic optimisation method for solving constrained engineering optimisation problems. Comput. Struct. 110, 151–166 (2012)

    Google Scholar 

  40. Birbil, Ş.İ., Fang, S.-C.: An electromagnetism-like mechanism for global optimisation. J. Global Optimisation. 25(3), 263–282 (2003)

    Google Scholar 

  41. Kaveh, A., Bakhshpoori, T.: Water evaporation optimisation: a novel physically inspired optimisation algorithm. Comput. Struct. 167, 69–85 (2016)

    Google Scholar 

  42. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Google Scholar 

  43. Kaveh, A., Talatahari, S.: A novel heuristic optimisation method: charged system search. Acta Mech. 213(3), 267–289 (2010)

    Google Scholar 

  44. Erol, O.K., Eksin, I.: A new optimisation method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Google Scholar 

  45. Hashim, F.A., et al.: Henry gas solubility optimisation: a novel physics-based algorithm. Future Generation Comput. Syst. 101, 646–667 (2019)

    Google Scholar 

  46. Tan, Y., Zhu, Y.: Fireworks algorithm for optimisation. In international conference in swarm intelligence. Springer. (2010)

  47. Randolph, H.E., Barreiro, L.B.: Herd immunity: understanding COVID-19. Immunity 52(5), 737–741 (2020)

    Google Scholar 

  48. Yampolskiy, R.V., El-Barkouky, A.: Wisdom of artificial crowds algorithm for solving NP-hard problems. Int. J. Bio-inspired Comput. 3(6), 358–369 (2011)

    Google Scholar 

  49. Lai, C.-C., et al.: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924 (2020)

    Google Scholar 

  50. Chen, B., Potts, C., Woeginger, G.: A review of machine scheduling: complexity, algorithms and approximability. Handbook Combinatorial Optim. 3, 1493–1641 (1998)

    Google Scholar 

  51. Al-Betar, M.A.: β-Hill climbing: an exploratory local search. Neural Comput. Appl. 28(1), 153–168 (2017)

    Google Scholar 

  52. Ramezani, F., Lotfi, S.: Social-based algorithm (SBA). Appl. Soft Comput. 13(5), 2837–2856 (2013)

    Google Scholar 

  53. Sadollah, A., et al.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimisation problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Google Scholar 

  54. Liang, Y.C., Cuevas Juarez, J.R.: A novel metaheuristic for continuous optimisation problems: virus optimisation algorithm. Eng. Optim. 48, 73–93 (2016)

    MathSciNet  Google Scholar 

  55. Martínez-Álvarez, F., et al.: Coronavirus Optimisation Algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model arXiv preprint, arXiv:2003.13633, (2020)

  56. Kwok, K.O., et al.: Herd immunity–estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect. 80(6), e32–e33 (2020)

    Google Scholar 

  57. Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimisation. ISA Trans. 53(4), 1168–1183 (2014)

    Google Scholar 

  58. Wu, F., et al.: Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv (2020). https://doi.org/10.1101/2020.03.30.20047365

    Article  Google Scholar 

  59. Mousavirad, S.: Ebrahimpour-Komleh. Feature selection using modified imperialist competitive algorithm. In: ICCKE 2013. IEEE (2013)

  60. Al-Betar, M.A., et al.: Coronavirus herd immunity optimiser (CHIO). Neural Comput. Appl. 10, 5011–5042 (2020)

    Google Scholar 

  61. Bennasar, M., Hicks, Y., Setchi, R.: Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42(22), 8520–8532 (2015)

    Google Scholar 

  62. Räsänen, O., Pohjalainen, J.: Random subset feature selection in automatic recognition of developmental disorders, affective states, and level of conflict from speech. In Interspeech. (2013)

  63. Sweetlin, J.D., Nehemiah, H.K., Kannan, A.: Feature selection using ant colony optimisation with tandem-run recruitment to diagnose bronchitis from CT scan images. Comput. Methods Programs Biomed. 145, 115–125 (2017)

    Google Scholar 

  64. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm, in feature extraction, construction and selection, pp. 117–136. Springer, Berlin (1998)

    Google Scholar 

  65. Hu, B., et al.: Feature selection for optimised high-dimensional biomedical data using an improved shuffled frog leaping algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(6), 1765–1773 (2016)

    Google Scholar 

  66. Moayedikia, A., et al.: Weighted bee colony algorithm for discrete optimisation problems with application to feature selection. Eng. Appl. Artif. Intell. 44, 153–167 (2015)

    Google Scholar 

  67. Rodrigues, D., et al.: BCS:a binary cuckoo search algorithm for feature selection. in 2013 IEEE International symposium on circuits and systems (ISCAS). IEEE. (2013)

  68. Fang, H., et al.: Automatic breast cancer detection based on optimised neural network using whale optimisation algorithm. Int. J. Imaging Syst. Technol. 31(1), 425–438 (2021)

    Google Scholar 

  69. Asghar, M.Z., et al.: A review of feature extraction in sentiment analysis. J. Basic Appl. Sci. Res. 4(3), 181–186 (2014)

    MathSciNet  Google Scholar 

  70. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Google Scholar 

  71. Sharma, M., Kaur, P.: A comprehensive analysis of nature-inspired meta-heuristic techniques for feature selection problem. Arch. Comput. Methods Eng. 28, 1–25 (2020)

    MathSciNet  Google Scholar 

  72. Ribeiro, G.S., et al.: Influence of herd immunity in the cyclical nature of arboviruses. Curr. Opin. Virol. 40, 1–10 (2020)

    Google Scholar 

  73. Glass, R.J., et al.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12(11), 1671 (2006)

    Google Scholar 

  74. Bezdan, T., et al.: Current best opposition-based learning salp swarm algorithm for global numerical optimisation. In 2021 zooming innovation in consumer technologies conference (ZINC). IEEE. (2021)

  75. Anderson, R.M., May, R.M.: Immunisation and herd immunity. Lancet. 335(8690), 641–645 (1990)

    Google Scholar 

  76. Lavine, J.S., King, A.A., Bjørnstad, O.N.: Natural immune boosting in pertussis dynamics and the potential for long-term vaccine failure. Proc. Natl. Acad. Sci. 108(17), 7259–7264 (2011)

    Google Scholar 

  77. Ali, Z.M., et al.: Economical-environmental-technical operation of power networks with high penetration of renewable energy systems using multi-objective coronavirus herd immunity algorithm. Mathematics. 10(7), 1201 (2022)

    Google Scholar 

  78. Long, N.J.: From social distancing to social containment: reimagining sociality for the coronavirus pandemic. Med. Anthropol. Theory 7(2), 247–260 (2020)

    Google Scholar 

  79. Si, T., Miranda, P.B., Bhattacharya, D.: Novel enhanced salp Swarm algorithms using opposition-based learning schemes for global optimisation problems. Expert Syst. Appl. 207, 117961 (2022)

    Google Scholar 

  80. Wang, Z., et al.: Advanced orthogonal opposition-based learning‐driven dynamic salp swarm algorithm: Framework and case studies. IET Control Theory Appl. 16(10), 945–971 (2022)

    Google Scholar 

  81. Bacanin, N., et al.: Energy efficient clustering in wireless sensor networks by opposition-based initialization bat algorithm, In Computer Networks and Inventive Communication Technologies: Proceedings of Fourth ICCNCT 2021. Springer. p. 1–16. (2021)

  82. Talha, A., Bouayad, A., Malki, M.O.C.: An improved pathfinder algorithm using opposition-based learning for tasks scheduling in cloud environment. J. Comput. Sci. 64, 101873 (2022)

    Google Scholar 

  83. Khishe, M.: Greedy opposition-based learning for chimp optimisation algorithm. Artif. Intell. Rev. 56(8), 7633–7663 (2023)

    Google Scholar 

  84. Roberts, S.: The swiss cheese model of pandemic defense. The New York Times, New York (2020)

    Google Scholar 

  85. Boyton, R.J., Altmann, D.M.: Risk of SARS-CoV-2 reinfection after natural infection. Lancet. 397(10280), 1161–1163 (2021)

    Google Scholar 

  86. Brest, J., Maučec, M.S., Bošković, B.: The 100-digit challenge: algorithm jDE100. In: 2019 IEEE congress on evolutionary computation (CEC). IEEE (2019)

  87. Derrac, J., et al.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Google Scholar 

  88. Price, K., et al.: The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimisation. Nanyang Technological Univ. 1, 1–21 (2018)

    Google Scholar 

  89. Xia, R., Zong, C., Li, S.: Ensemble of feature sets and classification algorithms for sentiment classification. Inf. Sci. 181(6), 1138–1152 (2011)

    Google Scholar 

  90. Azar, A.T., et al.: A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 113(2), 465–473 (2014)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ali Hosseinalipour: conceptualization, methodology, data curation, writing—original draft, reviewing and editing. Reza Ghanbarzadeh: conceptualization, methodology, writing—original draft, reviewing and editing. Bahman Arasteh: software, data curation, reviewing and editing. Farhad Soleimanian Gharehchopogh: validation, writing, reviewing and editing. Seyedali Mirjalili: conceptualization, validation, reviewing and editing.

Corresponding author

Correspondence to Ali Hosseinalipour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

No ethical data was used or analysed in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinalipour, A., Ghanbarzadeh, R., Arasteh, B. et al. A metaheuristic approach based on coronavirus herd immunity optimiser for breast cancer diagnosis. Cluster Comput 27, 9451–9475 (2024). https://doi.org/10.1007/s10586-024-04360-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04360-3

Keywords