Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Conditional minimum volume ellipsoid with application to multiclass discrimination

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a new formulation for constructing an n-dimensional ellipsoid by generalizing the computation of the minimum volume covering ellipsoid. The proposed ellipsoid construction is associated with a user-defined parameter β∈[0,1), and formulated as a convex optimization based on the CVaR minimization technique proposed by Rockafellar and Uryasev (J. Bank. Finance 26: 1443–1471, 2002). An interior point algorithm for the solution is developed by modifying the DRN algorithm of Sun and Freund (Oper. Res. 52(5):690–706, 2004) for the minimum volume covering ellipsoid. By exploiting the solution structure, the associated parametric computation can be performed in an efficient manner. Also, the maximization of the normal likelihood function can be characterized in the context of the proposed ellipsoid construction, and the likelihood maximization can be generalized with parameter β. Motivated by this fact, the new ellipsoid construction is examined through a multiclass discrimination problem. Numerical results are given, showing the nice computational efficiency of the interior point algorithm and the capability of the proposed generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, E.R.: An algorithm for separating patterns by ellipsoids. IBM J. Res. Dev. 26(6), 759–764 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  3. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Department of Information and Computer Science, University of California, Irvine, CA (1998)

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. [http://www.csie.ntu.edu.tw/~cjlin/libsvm] (2001)

  6. Cook, R.D., Hawkins, D.M., Weisberg, S.: Exact iterative computation of the robust multivariate minimum volume ellipsoid estimator. Stat. Probab. Lett. 16, 213–218 (1993)

    Article  MathSciNet  Google Scholar 

  7. Gärtner, B., Schönherr, S.: Smallest enclosing ellipses—fast and exact. In: Proceedings of the 13th Annual ACM Symposium on Computational Geometry, pp. 430–432 (1997)

  8. Hawkins, D.M.: A feasible solution algorithm for the minimum volume ellipsoid estimator in multivariate data. Comput. Stat. 8, 95–107 (1993)

    Google Scholar 

  9. Huberty, C.J.: Applied Discriminant Analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1994)

    MATH  Google Scholar 

  10. Khachiyan, L., Todd, M.: On the complexity of approximating the maximal inscribed ellipsoid for a polytope. Math. Program. 61, 137–159 (1993)

    Article  MathSciNet  Google Scholar 

  11. Konno, H., Gotoh, J., Uryasev, S., Yuki, A.: Failure discrimination by semi-definite programming. In: Pardalos, P.M., Tsitsiringos, V.K. (eds.) Financial Engineering, e-Commerce and Supply Chain, pp. 379–396. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  12. Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 43, 570–577 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rockafellar, T.R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  14. Rousseeuw, P.J.: Multivariate estimation with high breakdown point. In: Proceedings of the 4th Pannonian Symposium on Mathematical Statistics, Bad Tatzmannsdorf, Austria, 1983, pp. 283–297

  15. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1987)

    MATH  Google Scholar 

  16. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)

    Article  Google Scholar 

  17. Shioda, R., Tunçel, L.: Clustering via minimum volume ellipsoids. Comput. Optim. Appl. 37, 247–295 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sun, P., Freund, R.M.: Computation of minimum volume covering ellipsoids. Oper. Res. 52(5), 690–706 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Titterington, D.M.: Optimal design: some geometrical aspects of D-optimality. Biometrika 62, 313–320 (1975)

    MATH  MathSciNet  Google Scholar 

  20. Toh, K., Todd, M., Tütüncü, R.: Sdpt3—a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  21. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. Lecture Notes in Computer Science, vol. 555, pp. 359–370. Springer, Berlin (1991)

    Chapter  Google Scholar 

  22. Woodruff, D.L., Rocke, D.M.: Heuristic search algorithms for the minimum volume ellipsoid. J. Comput. Graph. Stat. 2, 69–95 (1993)

    Article  Google Scholar 

  23. Zhang, Y., Gao, L.: On numerical solution of the maximum volume ellipsoid problem. SIAM J. Optim. 14(1), 53–76 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ya Gotoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotoh, Jy., Takeda, A. Conditional minimum volume ellipsoid with application to multiclass discrimination. Comput Optim Appl 41, 27–51 (2008). https://doi.org/10.1007/s10589-007-9097-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9097-x

Keywords