Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving VLSI design and DNA sequencing problems using bipartization of graphs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider the 2-layer constrained via minimization problem and the SNP haplotype assembly problem. The former problem arises in the design of integrated and printed circuit boards, and the latter comes up in the DNA sequencing process for diploid organisms. We show that, for any maximum junction degree, the problem can be reduced to the maximum bipartite induced subgraph problem. Moreover we show that the SNP haplotype assembly problem can also be reduced to the maximum bipartite induced subgraph problem for the so-called minimum error correction criterion. We give a partial characterization of the bipartite induced subgraph polytope. Using this, we devise a branch-and-cut algorithm and report some experimental results. This algorithm has been used to solve real and large instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barahona, F.: On the complexity of max-cut. Rapport de recherche no. 186, IMAG, Université Scientifique et Médicale de Grenoble (1980)

  2. Barahona, F., Mahjoub, A.R.: Facets of the balanced acyclic induced subgraph polytope. Math. Program. 45, 21–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barahona, F., Mahjoub, A.R.: Composition of graphs and polyhedra I: Balanced induced subgraphs and acyclic subgraphs. SIAM J. Discrete Math. 7, 344–358 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math. Oper. Res. 10, 340–358 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988)

    Article  MATH  Google Scholar 

  6. Bonizzoni, P., Vedova, G.D., Dondi, R., Li, J.: The haplotyping problem: An overview of computational models and solutions. J. Comput. Sci. Technol. 18, 675–688 (2003)

    Article  MATH  Google Scholar 

  7. Chang, C.C., Cong, J.: An efficient approach to multi-layer layer assignment with application to via minimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 608–620 (1999)

    Article  Google Scholar 

  8. Cheng, E., Cunningham, W.: Wheel inequalities for stable set polytope. Math. Program. 77, 389–421 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Chen, R., Kajitani, Y., Chan, S.: A graph theoretic via minimization algorithm for two layer printed circuit boards. IEEE Trans. Circuits Syst. 30, 284–299 (1983)

    Article  MATH  Google Scholar 

  10. Choi, H., Nakajima, K., Rim, C.: Graph bipartization and via minimization. SIAM J. Discrete Math. 2, 38–47 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fonlupt, J., Mahjoub, A.R., Uhry, J.: Compositions in the bipartite subgraph polytope. Discrete Math. 105, 73–91 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fouilhoux, P.: Graphes k-partis et conception de circuit VLSI. Ph.D Thesis Ner D.U. 1555, EDSPIC 314, Université Blaise Pascal, Clermont-Ferrand, France (2004)

  13. Fouilhoux, P., Mahjoub, A.R.: An exact model for multi-layer constrained via minimization. Preprint (2006)

  14. Fouilhoux, P., Mahjoub, A.R.: Polyhedral results for the bipartite induced subgraph problem. Discrete Appl. Math. 154, 2128–2149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fouilhoux, P., Mahjoub, A.R.: Cellular inequalities for the induced bipartite subgraph polytope (in preparation)

  16. Froleyks, B., Korte, B., Prömel, H.J.: Routing in VLSI-layout. Acta Math. Appl. Sin. 7, 53–66 (1991)

    Article  MATH  Google Scholar 

  17. Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the max-cut problem, operations research. Oper. Res. 1, 23–27 (1981)

    MATH  Google Scholar 

  18. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1985)

    Google Scholar 

  19. Guenin, B.: A characterization of weakly bipartite graphs. J. Comb. Theory B 83, 112–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment with large apertures. In: Proc. 8th Design Automation Workshop, pp. 155–169 (1971)

  21. ISPD02: http://vlsicad.eecs.umich.edu/BK/ISPD02bench/ (2002)

  22. Kajitani, Y.: On via hole minimization of routings on a 2-layer board. In: Proc. IEEE ICCC, pp. 295–298 (1980)

  23. Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity, and algorithms. In: ESA, pp. 182–193 (2001)

  24. Lengauer, T., Lügering, M.: Integer program formulations of global routing and placement problems. Reihe Informatik Nr. 95, Univ. Gesamthochschule-Paderborn (1991)

  25. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform 3, 23–31 (2002)

    Article  Google Scholar 

  26. Möhring, R., Wagner, D., Wagner, F.: VLSI network design, a survey. TR No. 323, Univ. Berlin (1992)

  27. Nemhauser, G., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Oper. Res. Soc. 43, 443–457 (1992)

    MATH  Google Scholar 

  28. Panconesi, A., Sozio, M.: Fast hare: a fast heuristic for single individual SNP haplotype reconstruction. In: Proc. WABI 2004, pp. 266–277 (2004)

  29. Pinter, R.: Optimal layer assignment for interconnect. In: Proc. International Symposium on Circuits on Systems, pp. 398–401 (1982)

  30. Sanger, F., Coulson, A., Hong, G., Hill, D., Petersen, G.: Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982)

    Article  Google Scholar 

  31. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Venter, J.C., Adams, M.D., Myers, E.W., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ridha Mahjoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouilhoux, P., Mahjoub, A.R. Solving VLSI design and DNA sequencing problems using bipartization of graphs. Comput Optim Appl 51, 749–781 (2012). https://doi.org/10.1007/s10589-010-9355-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9355-1

Keywords