Abstract
In this paper we consider the 2-layer constrained via minimization problem and the SNP haplotype assembly problem. The former problem arises in the design of integrated and printed circuit boards, and the latter comes up in the DNA sequencing process for diploid organisms. We show that, for any maximum junction degree, the problem can be reduced to the maximum bipartite induced subgraph problem. Moreover we show that the SNP haplotype assembly problem can also be reduced to the maximum bipartite induced subgraph problem for the so-called minimum error correction criterion. We give a partial characterization of the bipartite induced subgraph polytope. Using this, we devise a branch-and-cut algorithm and report some experimental results. This algorithm has been used to solve real and large instances.
Similar content being viewed by others
References
Barahona, F.: On the complexity of max-cut. Rapport de recherche no. 186, IMAG, Université Scientifique et Médicale de Grenoble (1980)
Barahona, F., Mahjoub, A.R.: Facets of the balanced acyclic induced subgraph polytope. Math. Program. 45, 21–34 (1989)
Barahona, F., Mahjoub, A.R.: Composition of graphs and polyhedra I: Balanced induced subgraphs and acyclic subgraphs. SIAM J. Discrete Math. 7, 344–358 (1994)
Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math. Oper. Res. 10, 340–358 (1985)
Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988)
Bonizzoni, P., Vedova, G.D., Dondi, R., Li, J.: The haplotyping problem: An overview of computational models and solutions. J. Comput. Sci. Technol. 18, 675–688 (2003)
Chang, C.C., Cong, J.: An efficient approach to multi-layer layer assignment with application to via minimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 608–620 (1999)
Cheng, E., Cunningham, W.: Wheel inequalities for stable set polytope. Math. Program. 77, 389–421 (1997)
Chen, R., Kajitani, Y., Chan, S.: A graph theoretic via minimization algorithm for two layer printed circuit boards. IEEE Trans. Circuits Syst. 30, 284–299 (1983)
Choi, H., Nakajima, K., Rim, C.: Graph bipartization and via minimization. SIAM J. Discrete Math. 2, 38–47 (1989)
Fonlupt, J., Mahjoub, A.R., Uhry, J.: Compositions in the bipartite subgraph polytope. Discrete Math. 105, 73–91 (1992)
Fouilhoux, P.: Graphes k-partis et conception de circuit VLSI. Ph.D Thesis Ner D.U. 1555, EDSPIC 314, Université Blaise Pascal, Clermont-Ferrand, France (2004)
Fouilhoux, P., Mahjoub, A.R.: An exact model for multi-layer constrained via minimization. Preprint (2006)
Fouilhoux, P., Mahjoub, A.R.: Polyhedral results for the bipartite induced subgraph problem. Discrete Appl. Math. 154, 2128–2149 (2006)
Fouilhoux, P., Mahjoub, A.R.: Cellular inequalities for the induced bipartite subgraph polytope (in preparation)
Froleyks, B., Korte, B., Prömel, H.J.: Routing in VLSI-layout. Acta Math. Appl. Sin. 7, 53–66 (1991)
Grötschel, M., Pulleyblank, W.: Weakly bipartite graphs and the max-cut problem, operations research. Oper. Res. 1, 23–27 (1981)
Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1985)
Guenin, B.: A characterization of weakly bipartite graphs. J. Comb. Theory B 83, 112–168 (2001)
Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment with large apertures. In: Proc. 8th Design Automation Workshop, pp. 155–169 (1971)
ISPD02: http://vlsicad.eecs.umich.edu/BK/ISPD02bench/ (2002)
Kajitani, Y.: On via hole minimization of routings on a 2-layer board. In: Proc. IEEE ICCC, pp. 295–298 (1980)
Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity, and algorithms. In: ESA, pp. 182–193 (2001)
Lengauer, T., Lügering, M.: Integer program formulations of global routing and placement problems. Reihe Informatik Nr. 95, Univ. Gesamthochschule-Paderborn (1991)
Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform 3, 23–31 (2002)
Möhring, R., Wagner, D., Wagner, F.: VLSI network design, a survey. TR No. 323, Univ. Berlin (1992)
Nemhauser, G., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Oper. Res. Soc. 43, 443–457 (1992)
Panconesi, A., Sozio, M.: Fast hare: a fast heuristic for single individual SNP haplotype reconstruction. In: Proc. WABI 2004, pp. 266–277 (2004)
Pinter, R.: Optimal layer assignment for interconnect. In: Proc. International Symposium on Circuits on Systems, pp. 398–401 (1982)
Sanger, F., Coulson, A., Hong, G., Hill, D., Petersen, G.: Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982)
Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)
Venter, J.C., Adams, M.D., Myers, E.W., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fouilhoux, P., Mahjoub, A.R. Solving VLSI design and DNA sequencing problems using bipartization of graphs. Comput Optim Appl 51, 749–781 (2012). https://doi.org/10.1007/s10589-010-9355-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-010-9355-1