Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scaling linear optimization problems prior to application of the simplex method

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The scaling of linear optimization problems, while poorly understood, is definitely not devoid of techniques. Scaling is the most common preconditioning technique utilized in linear optimization solvers, and is designed to improve the conditioning of the constraint matrix and decrease the computational effort for solution. Most importantly, scaling provides a relative point of reference for absolute tolerances. For instance, absolute tolerances are used in the simplex algorithm to determine when a reduced cost is considered to be nonnegative. Existing techniques for obtaining scaling factors for linear systems are investigated herein. With a focus on the impact of these techniques on the performance of the simplex method, we analyze the results obtained from over half a billion simplex computations with CPLEX, MINOS and GLPK, including the computation of the condition number at every iteration. Some of the scaling techniques studied are computationally more expensive than others. For the Netlib and Kennington problems considered herein, it is found that on average no scaling technique outperforms the simplest technique (equilibration) despite the added complexity and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, F.L.: Optimally scaled matrices. Numer. Math. 5, 73–87 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benichou, M., Gauthier, J.M., Hentges, G., Ribiere, G.: The efficient solution of large-scale linear programming problems—Some algorithmic techniques and computational results. Math. Program. 13, 280–322 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bixby, R.E.: Solving real-world linear programs: A decade and more of progress. Oper. Res. 50, 3–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bradley, A.: Algorithms for the equilibration of matrices and their application to limited-memory quasi-Newton methods. PhD thesis, Stanford University, Stanford, California (2010)

  5. Chvátal, V.: Linear Programming. W.H. Freeman, New York (1983)

    MATH  Google Scholar 

  6. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. J. Inst. Math. Appl. 10, 118–124 (1972)

    Article  MATH  Google Scholar 

  7. Dahlquist, G., Björck, Å.: Numerical Methods. Prentice Hall, Englewood Cliffs (1963)

    Google Scholar 

  8. de Buchet, J.: Experiments and statistical data on the solving of large-scale linear programs. In: Hertz, D.A., Melese, J. (eds.) Proceedings of the Fourth International Conference on Operational Research, pp. 3–13. Wiley-Interscience, New York (1966)

    Google Scholar 

  9. Elble, J.: Scaling linear programs: A comprehensive case study. Master’s thesis, University of Illinois Urbana-Champaign, Urbana, IL (2007)

  10. Elble, J.M., Sahinidis, N.V.: Matrix binormalization on a GPU. In: Lecture Notes in Computer Science (2009, accepted)

  11. Forsythe, G.E., Straus, E.G.: On best conditioned matrices. Proc. Am. Math. Soc. 6, 340–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fulkerson, D.R., Wolfe, P.: An algorithm for scaling matrices. SIAM Rev. 4, 142–146 (1962)

    Article  MathSciNet  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Hamming, R.W.: Introduction to Applied Numerical Analysis. McGraw-Hill, New York (1971)

    MATH  Google Scholar 

  15. IBM: IBM ILOG CPLEX Optimization Studio, Version 12.2 User’s Manual, Armonk, NY (2010)

  16. Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm for linear programming (Preliminary version). Electron. Colloq. Comput. Complex. 156, 1–17 (2005)

    Google Scholar 

  17. Larsson, T.: On scaling linear programs—Some experimental results. Optimization 27, 335–373 (1993)

    Article  MathSciNet  Google Scholar 

  18. Livne, O.E., Golub, G.H.: Scaling by binormalization. Numer. Algorithms 35, 97–120 (2004)

    Article  MathSciNet  Google Scholar 

  19. Makhorin, A.: GLPK—GNU linear programming kit. http://www.gnu.org/software/glpk/glpk.html (2008)

  20. Murtagh, B.A., Saunders, M.A.: MINOS 5.5 user’s guide. Technical report, Department of Operations Research, Stanford University, Stanford, CA (1998)

  21. Orchard-Hays, W.: Advanced Linear Programming Computing Techniques. McGraw-Hill, New York (1968)

    Google Scholar 

  22. Pierre, D.A.: An optimal scaling method. IEEE Trans. Syst. Man Cybern. SMC-17, 2–6 (1987)

    Article  Google Scholar 

  23. Rothblum, U.G., Schneider, H.: Characterizations of optimal scalings of matrices. Math. Program. 19, 121–136 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tomlin, J.A.: On scaling linear programming problems. Math. Program. Stud. 4, 146–166 (1975)

    Article  MathSciNet  Google Scholar 

  25. van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. van der Sluis, A.: Condition, equilibration and pivoting in linear algebraic systems. Numer. Math. 15, 74–86 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. von Golitschek, M.: An algorithm for scaling matrices and computing the minimum cycle mean in a digraph. Numer. Math. 35, 45–55 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Sahinidis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 3.73 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elble, J.M., Sahinidis, N.V. Scaling linear optimization problems prior to application of the simplex method. Comput Optim Appl 52, 345–371 (2012). https://doi.org/10.1007/s10589-011-9420-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9420-4

Keywords