Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite element error estimates for Neumann boundary control problems on graded meshes

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A specific elliptic linear-quadratic optimal control problem with Neumann boundary control is investigated. The control has to fulfil inequality constraints. The domain is assumed to be polygonal with reentrant corners. The asymptotic behaviour of two approaches to compute the optimal control is discussed. In the first the piecewise constant approximations of the optimal control are improved by a postprocessing step. In the second the control is not discretized; instead the first order optimality condition is used to determine an approximation of the optimal control. Although the quality of both approximations is in general affected by corner singularities a convergence order of 3/2 can be proven provided that the mesh is sufficiently graded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, Th., Sirch, D.: L 2-error estimates for the Dirichlet- and Neumann problem on anisotropic finite element meshes. SPP 1253, Preprint SPP1253-02-05 (2008)

  2. Apel, Th., Winkler, G.: Optimal control under reduced regularity. Appl. Numer. Math. 59, 2050–2064 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apel, Th., Sändig, A., Whiteman, J.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apel, Th., Rösch, A., Winkler, G.: Optimal control in non-convex domains: a priori discretization error estimates. CALCOLO 44(3), 137–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Apel, Th., Sirch, D., Winkler, G.: Error estimates for control constrained optimal control problems: discretization with anisotropic finite element meshes. DFG Priority Program 1253, Preprint SPP1253-02-06 (2008)

  6. Apel, Th., Rösch, A., Sirch, D.: L -error estimates on graded meshes with application to optimal control. SIAM J. Control Optim. 48(3), 1771–1796 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23(2), 201–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  10. Casas, E.: Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26, 137–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl. 39(3), 265–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casas, E., Tröltzsch, F.: Error estimates for linear-quadratic elliptic control problems. In: Barbu, V., et al. (eds.) Analysis and Optimization of Differential Systems, pp. 89–100. Kluwer Academic, Boston (2003)

    Google Scholar 

  13. Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31(2), 193–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2, 17–351 (1991)

    Article  Google Scholar 

  15. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains—Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988). Smoothness and asymptotics of solutions

    MATH  Google Scholar 

  16. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Mathematics of Computation 34(150), 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Falk, M.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO. Anal. Numér. 13, 313–328 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  20. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hinze, M., Matthes, U.: A note on variational discretization of elliptic Neumann boundary control. Control Cybern. 38, 577–591 (2009)

    MathSciNet  Google Scholar 

  22. John, V., Matthies, G.: MoonNMD—a program package based on mapped finite element methods. Comput. Vis. Sci. 6, 163–169 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Kozlov, V.A., Maz’ya, V.G., Roßmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  24. Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8, 69–95 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mateos, M., Rösch, A.: On saturation effects in the Neumann boundary control of elliptic optimal control problems. Comput. Optim. Appl. 49, 359–378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer, C., Rösch, A.: L -estimates for approximated optimal control problems. SIAM J. Control Optim. 44, 1636–1649 (2005)

    Article  MathSciNet  Google Scholar 

  27. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2005)

    Article  Google Scholar 

  28. Oganesyan, L.A., Rukhovets, L.A., Rivkind, V.Ya.: Variational-Difference Methods for Solving Elliptic Equations, Part II. Differential Equations and Their Applications, vol. 8. Izd. Akad. Nauk Lit. SSR, Vilnius (1974)

    Google Scholar 

  29. Raugel, G.: Résolution numéique de problèmes elliptiques dans des domaines avec coins. PhD thesis, Université Rennes, France (1978)

  30. Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwend. 23, 353–376 (2004)

    Article  MATH  Google Scholar 

  31. Rösch, A.: Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21(1), 121–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Roßmann, J.: Gewichtete Sobolev-Slobodetskij-Räume und Anwendungen auf elliptische Randwertprobleme in Gebieten mit Kanten. Habilitationsschrift, Universität Rostock (1988)

  33. Wloka, J.: Partielle Differentialgleichungen. Teubner, Leipzig (1982)

    MATH  Google Scholar 

  34. Zaionchkovskii, V., Solonnikov, V.A.: Neumann problem for second-order elliptic equations in domains with edges on the boundary. J. Math. Sci. 27(2), 2561–2586 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Apel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apel, T., Pfefferer, J. & Rösch, A. Finite element error estimates for Neumann boundary control problems on graded meshes. Comput Optim Appl 52, 3–28 (2012). https://doi.org/10.1007/s10589-011-9427-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9427-x

Keywords