Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Active-set Newton methods for mathematical programs with vanishing constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Mathematical programs with vanishing constraints constitute a new class of difficult optimization problems with important applications in optimal topology design of mechanical structures. Vanishing constraints usually violate standard constraint qualifications, which gives rise to serious difficulties in theoretical and numerical treatment of these problems. In this work, we suggest several globalization strategies for the active-set Newton-type methods developed earlier by the authors for this problem class, preserving superlinear convergence rate of these methods under weak assumptions. Preliminary numerical results demonstrate that our approach is rather promising and competitive with respect to the existing alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114, 69–99 (2007)

    Article  MathSciNet  Google Scholar 

  2. Achtziger, W., Hoheisel, T., Kanzow, C.: A smoothing-regularization approach to mathematical programs with vanishing constraints. Preprint 284, Institute of Mathematics, University of Würzburg (2008)

  3. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y.D., Gao, Y., Liu, Y.-J.: An inexact SQP Newton method for convex SC1 minimization problems. J. Optim. Theory Appl. 146, 33–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  6. De Luca, T., Facchinei, F., Kanzow, C.: A theoretical and numerical comparison of some semismooth algorithms for complementarity problems. Comput. Optim. Appl. 16, 173–205 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  9. Facchinei, F., Fischer, A., Kanzow, C.: Regularity properties of a semismooth reformulation of variational inequalities. SIAM J. Optim. 8, 850–869 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14–32 (1999)

    Article  MathSciNet  Google Scholar 

  11. Fischer, A.: Local behaviour of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hager, W.W., Gowda, M.S.: Stability in the presence of degeneracy and error estimation. Math. Program. 85, 181–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoheisel, T., Kanzow, C.: First- and second-order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 52, 495–514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoheisel, T., Kanzow, C.: Stationarity conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337, 292–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoheisel, T., Kanzow, C.: On the Abadie and Guignard constraint qualifications for mathematical programs with vanishing constraints. Optimization 58, 431–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoheisel, T., Kanzow, C., Outrata, J.: Exact penalty results for mathematical programs with vanishing constraints. Nonlinear Anal. 72, 2514–2526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoheisel, T., Kanzow, C., Schwartz, A.: Convergence of a local regularization approach for mathematical programs with complementarity or vanishing constraints. Optim. Methods Softw. doi:10.1080/10556788.2010.535170

  18. Izmailov, A.F., Pogosyan, A.L.: Optimality conditions and Newton-type methods for mathematical programs with vanishing constraints. Comput. Math. Math. Phys. 49, 1128–1140 (2009)

    Article  MathSciNet  Google Scholar 

  19. Izmailov, A.F., Pogosyan, A.L.: On active-set methods for mathematical programs with vanishing constraints. In: Bereznyov, V.A. (ed.) Theoretical and Applied Problems of Nonlinear Analysis, pp. 18–49. CCAS, Moscow (2009) (In Russian)

    Google Scholar 

  20. Izmailov, A.F., Solodov, M.V.: An active-set Newton method for mathematical programs with complementarity constraints. SIAM J. Optim. 19, 1003–1027 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Izmailov, A.F., Solodov, M.V.: Mathematical programs with vanishing constraints: optimality conditions, sensitivity, and a relaxation method. J. Optim. Theory Appl. 142, 501–532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Izmailov, A.F., Pogosyan, A.L., Solodov, M.V.: Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints. Comput. Optim. Appl. 51, 199–221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge Univ. Press, Cambridge (1996)

    Book  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  25. Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Kluwer Academic, Boston (1998)

    MATH  Google Scholar 

  26. Tseng, P.: Growth behavior of a class of merit functions for the nonlinear complementarity problem. J. Optim. Theory Appl. 89, 17–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for useful comments. In particular, Remark 4.1 is in response to the question raised by one of the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Pogosyan.

Additional information

This research is supported by the Russian Foundation for Basic Research Grant 10-01-00251.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailov, A.F., Pogosyan, A.L. Active-set Newton methods for mathematical programs with vanishing constraints. Comput Optim Appl 53, 425–452 (2012). https://doi.org/10.1007/s10589-012-9467-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9467-x

Keywords