Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active-set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set estimates themselves, where for each a primal-dual solution is uniquely defined via a reduced subproblem. Through the introduction of an index set auxiliary to the active-set estimate, our approach is globally convergent for strictly convex QPs. Moreover, the computational cost of each iteration typically is only modestly more than the cost of solving a reduced linear system. Numerical results are provided, illustrating that two proposed instances of our framework are efficient in practice, even on poorly conditioned problems. We attribute these latter benefits to the relationship between our framework and semi-smooth Newton techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganagić, M.: Newton’s method for linear complementarity problems. Math. Program. 28(3), 349–362 (1984)

    Article  MATH  Google Scholar 

  2. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergounioux, M., Kunisch, K.: Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22(2), 193–224 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrd, R.H., Chin, G.M., Nocedal, J., Oztoprak, F.: A family of second-order methods for convex \(\ell _1\)-regularized optimization. Technical report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (2012)

  6. Chen, L., Wang, Y., He, G.: A feasible active set QP-free method for nonlinear programming. SIAM J. Optim. 17(2), 401–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (2002)

    Book  Google Scholar 

  8. Conn, A.R., Gould, N.I.M., Toint, PhL: A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28(2), 545–572 (1991)

  9. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  10. Cryer, C.W.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9(3), 385–392 (1971)

    Article  MathSciNet  Google Scholar 

  11. Feng, L., Linetsky, V., Morales, J.L., Nocedal, J.: On the solution of complementarity problems arising in American options pricing. Optim. Method. Softw. 26(4–5), 813–825 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput., 1–37 (2014)

  13. Gharbia, I.B., Gilbert, J.C.: Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix. Math. Program. 134(2), 349–364 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SQOPT version 7: software for largescale linear and quadratic programming. Systems Optimization Laboratory, Stanford University, Palo Alto, CA (2006)

  16. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Emerald Group Publishing Limited, Bingley (1982)

    Google Scholar 

  17. Gill, P.E., Robinson, D.P.: Regularized sequential quadratic programming methods. Technical report, Department of Mathematics, University of California, San Diego, La Jolla, CA (2011)

  18. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: global convergence. SIAM J. Optim. 20(4), 2023–2048 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: local convergence and practical issues. SIAM J. Optim. 20(4), 2049–2079 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gould, N.I.M., Robinson, D.P.: A second-derivative SQP method with a “trust-region-free” predictor step. IMA J. Numer. Anal. 32(2), 580–601 (2011)

    Article  MathSciNet  Google Scholar 

  21. Gould, N.I.M., Toint, PhL: An iterative working-set method for large-scale nonconvex quadratic programming. Appl. Numer. Math. 43(1), 109–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hager, W.W.: The dual active set algorithm. In: Pardalos, P.M. (ed.) Advances in Optimization and Parallel Computing, pp. 137–142. North Holland, Amsterdam (1992)

    Google Scholar 

  24. Hager, W.W., Hearn, D.W.: Application of the dual active set algorithm to quadratic network optimization. Comput. Optim. Appl. 1(4), 349–373 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003)

    Article  MATH  Google Scholar 

  26. Kostreva, M.M.: Block pivot methods for solving the complementarity problem. Linear Algebra Appl. 21(3), 207–215 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kočvara, M., Zowe, J.: An iterative two-step algorithm for linear complementarity problems. Numerische Mathematik 68(1), 95–106 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kunisch, K., Rendl, F.: An infeasible active set method for quadratic problems with simple bounds. SIAM J. Optim. 14(1), 35–52 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optim. Method. Softw. 11(1–4), 671–681 (1999)

    Article  Google Scholar 

  30. Moré, J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1(1), 93–113 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nocedal, J., Wright, S.J.: Numerical Optimization 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

  32. Portugal, L.F., Júdice, J.J., Vicente, L.N.: A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables. Math. Comput. 63(208), 625–643 (1994)

    Article  MATH  Google Scholar 

  33. Robinson, D.P., Feng, L., Nocedal, J., Pang, J.S.: Subspace accelerated matrix splitting algorithms for asymmetric and symmetric linear complementarity problems. SIAM J. Optim. 23(3), 1371–1397 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Toint, PhL: Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints. Math. Program. 77(3), 69–94 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ulbrich, M., Ulbrich, S.: Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function. Math. Program. 95(1), 103–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vapnik, V., Cortes, C.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  37. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. J. Am. Statist. Assoc. 80(389), 8–20 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Frank E. Curtis, Zheng Han was supported in part by National Science Foundation Grant DMS–1016291. Daniel P. Robinson was supported in part by National Science Foundation Grant DMS–1217153

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Han.

Appendix: Primal-dual active-set as a semi-smooth newton method

Appendix: Primal-dual active-set as a semi-smooth newton method

In this appendix, we show that Algorithm 3 is equivalent to a semi-smooth Newton method under certain conditions. The following theorem utilizes the concept of a slant derivative of a slantly differentiable function [25].

Theorem 5

Let \(\{(x_k,y_k,z^\ell _k,z^u_k)\}\) be generated by Algorithm 3 with Step 6 employing Algorithm 4, where we suppose that, for all \(k\), \(({\mathcal A}_k^\ell ,{\mathcal A}_k^u,{\mathcal I}_k,{\mathcal U}_k)\) with \({\mathcal U}_k=\emptyset \) is a feasible partition at the start of Step 3. Then, \(\{(x_k,y_k,z^\ell _k,z^u_k)\}\) is the sequence of iterates generated by the semi-smooth Newton method for finding a zero of the function \(\mathrm{KKT}\) defined by (2) with initial value \((x_0,y_0,z^\ell _0,z^u_0) = \mathrm{SM}({\mathcal A}^\ell _0,{\mathcal A}^u_0,{\mathcal I}_0,\emptyset )\) and slant derivative \(M(a,b)\) of the slantly differentiable function \(m(a,b)=\min (a,b)\) defined by

$$\begin{aligned}{}[M(a,b)]_{ij} = {\left\{ \begin{array}{ll} 0 &{}\quad \mathrm{{if }} j\notin \{i,n+i\} \\ 1 &{}\quad \mathrm{{if }} j=i, a_i \le b_j \\ 0 &{}\quad \mathrm{{if }} j=i, a_i > b_j \\ 0 &{}\quad \mathrm{{if }} j=n+i, a_i \le b_j \\ 1 &{}\quad \mathrm{{if }} j=n+i, a_i > b_j. \end{array}\right. } \end{aligned}$$

Proof

To simplify the proof, let us assume that \(\ell = -\infty \) so that problem (1) has upper bounds only. This ensures that \(z^\ell _k = 0\) and \({\mathcal A}^\ell _k = \emptyset \) for all \(k\), so in this proof we remove all references to these quantities. The proof of the case with both lower and upper bounds follows similarly.

Under the assumptions of the theorem, the point \((x_0,y_0,z^u_0) \leftarrow \mathrm{SM}(\emptyset ,{\mathcal A}^u_0,{\mathcal I}_0,\emptyset )\) is the first primal-dual iterate for both algorithms, i.e., Algorithm 3 and the semi-smooth Newton method. Furthermore, it follows from (4)–(6) that

$$\begin{aligned} Hx_0 + c - A^T\!y_0 + z^u_0 = 0 \quad \hbox {and}\quad Ax_0 - b = 0. \end{aligned}$$
(26)

We now proceed to show that both algorithms generate the same subsequent iterate, namely \((x_1,y_1,z^u_1)\). The result then follows as a similar argument can be used to show that both algorithms generate the same iterate \((x_k,y_k,z^u_k)\) for each \(k\).

Partitioning the variable indices into four sets, namely \(\mathrm{I}\), \(\mathrm{II}\), \(\mathrm{III}\), and \(\mathrm{IV}\), we find:

$$\begin{aligned} \mathrm{I}&:= \{i: i\in {\mathcal I}_0 \;\;\hbox {and}\;\; [x_0]_i \le u_i\} \implies [z^u_0]_i = 0;\end{aligned}$$
(27a)
$$\begin{aligned} \mathrm{II}&:= \{i: i\in {\mathcal A}^u_0 \;\;\hbox {and}\;\; [z^u_0]_i \le 0\} \implies [x_0]_i = u_i;\end{aligned}$$
(27b)
$$\begin{aligned} \mathrm{III}&:= \{i: i\in {\mathcal I}_0 \;\;\hbox {and}\;\; [x_0]_i > u_i\} \implies [z^u_0]_i = 0;\end{aligned}$$
(27c)
$$\begin{aligned} \mathrm{IV}&:= \{i: i\in {\mathcal A}^u_0 \;\;\hbox {and}\;\; [z^u_0]_i > 0\} \implies [x_0]_i = u_i. \end{aligned}$$
(27d)

Here, the implications after each set follow from Step 2 of Algorithm 2. Next, (16) implies

$$\begin{aligned} {\mathcal I}_1 \leftarrow \mathrm{I}\cup \mathrm{II}\;\;\hbox {and}\;\; {\mathcal A}_1 \leftarrow \mathrm{III}\cup \mathrm{IV}. \end{aligned}$$
(28)

Algorithm 3 computes the next iterate as the unique point \((x_1,y_1,z^u_1)\) satisfying

$$\begin{aligned}{}[z^u_1]_{{\mathcal I}_1} = 0, \quad [x_1]_{{\mathcal A}_1} = u_{{\mathcal A}_1}, \quad Hx_1+c-A^T\!y_1 + z^u_1 = 0, \quad \hbox {and}\quad Ax_1 - b = 0.\nonumber \\ \end{aligned}$$
(29)

Now, let us consider one iteration of the semi-smooth Newton method on the function KKT defined by (2) using the slant derivative function \(M\). It follows from (27), Table 13, and the definition of \(M\) that the semi-smooth Newton system may be written as

$$\begin{aligned} \begin{pmatrix}H_{\mathrm{I},\mathrm{I}} &{} H_{\mathrm{I},\mathrm{II}} &{} H_{\mathrm{I},\mathrm{III}} &{} H_{\mathrm{I},\mathrm{IV}} &{} A_{{\mathcal N},\mathrm{I}}^T\!&{} I &{} 0 &{} 0 &{} 0 \\ H_{\mathrm{II},\mathrm{I}} &{} H_{\mathrm{II},\mathrm{II}} &{} H_{\mathrm{II},\mathrm{III}} &{} H_{\mathrm{II},\mathrm{IV}} &{} A_{{\mathcal N},\mathrm{II}}^T\!&{} 0 &{} I &{} 0 &{} 0 \\ H_{\mathrm{III},\mathrm{I}} &{} H_{\mathrm{III},\mathrm{II}} &{} H_{\mathrm{III},\mathrm{III}} &{} H_{\mathrm{III},\mathrm{IV}} &{} A_{{\mathcal N},\mathrm{III}}^T\!&{} 0 &{} 0 &{} I &{} 0 \\ H_{\mathrm{IV},\mathrm{I}} &{} H_{\mathrm{IV},\mathrm{II}} &{} H_{\mathrm{IV},\mathrm{III}} &{} H_{\mathrm{IV},\mathrm{IV}} &{} A_{{\mathcal N},\mathrm{IV}}^T\!&{} 0 &{} 0 &{} 0 &{} I \\ A_{{\mathcal N},\mathrm{I}} &{} A_{{\mathcal N},\mathrm{II}} &{} A_{{\mathcal N},\mathrm{III}} &{} A_{{\mathcal N},\mathrm{IV}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} I &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} I &{} 0 &{} 0 \\ 0 &{} 0 &{} -I &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -I &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\end{pmatrix} \begin{pmatrix}\varDelta x_\mathrm{I}\\ \varDelta x_{\mathrm{II}} \\ \varDelta x_{\mathrm{III}} \\ \varDelta x_{\mathrm{IV}} \\ -\varDelta y\\ \varDelta z_\mathrm{I}\\ \varDelta z_{\mathrm{II}} \\ \varDelta z_{\mathrm{III}} \\ \varDelta z_{\mathrm{IV}} \end{pmatrix} = -\begin{pmatrix}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ [z^u_0]_\mathrm{II}\\ [u-x_0]_\mathrm{III}\\ 0\end{pmatrix}. \end{aligned}$$
(30)

The first five block equations of (30) combined with (26) yield

$$\begin{aligned} Ax_1 - b&= A(x_0+\varDelta x) - b = Ax_0 - b + A\varDelta x= 0 \;\;\hbox {and} \end{aligned}$$
(31a)
$$\begin{aligned} Hx_1 + c - A^T\!y_1 + z^u_1&= H(x_0+\varDelta x) + c - A^T\!(y_0+\varDelta y) + z^u_0+\varDelta z= 0, \end{aligned}$$
(31b)

while the last four blocks of equations of (30) and (27) imply

$$\begin{aligned} \varDelta z_\mathrm{I}= 0&\implies [z^u_1]_\mathrm{I}= [z^u_0+\varDelta z]_\mathrm{I}= 0 \end{aligned}$$
(32)
$$\begin{aligned} \varDelta z_\mathrm{II}= -[z^u_0]_\mathrm{II}&\implies [z^u_1]_\mathrm{II}= [z^u_0+\varDelta z]_\mathrm{II}= 0 \end{aligned}$$
(33)
$$\begin{aligned} \varDelta x_\mathrm{III}= [u-x_0]_\mathrm{III}&\implies [x_1]_\mathrm{III}= [x_0+\varDelta x]_\mathrm{III}= u_\mathrm{III}\end{aligned}$$
(34)
$$\begin{aligned} \varDelta x_\mathrm{IV}= 0&\implies [x_1]_\mathrm{IV}= [x_0+\varDelta x]_\mathrm{IV}= u_\mathrm{IV}\end{aligned}$$
(35)

so that

$$\begin{aligned}{}[z^u_1]_{{\mathcal I}_1} = 0 \;\;\hbox {and}\;\; [x_1]_{{\mathcal A}_1} = u_{{\mathcal A}_1}. \end{aligned}$$
(36)

It now follows from (29), (31), and (36) that \((x_1,y_1,z^u_1)\) generated by the semi-smooth Newton method is the same as that generated by Algorithm 3.\(\square \)

Table 13 Quantities relevant to evaluating the function KKT and computing the slant derivative \(M\) at the point \((x_0,y_0,z^u_0)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtis, F.E., Han, Z. & Robinson, D.P. A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization. Comput Optim Appl 60, 311–341 (2015). https://doi.org/10.1007/s10589-014-9681-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9681-9

Keywords

Mathematic Subject Classification