Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we address the stable numerical solution of nonlinear ill-posed systems by a trust-region method. We show that an appropriate choice of the trust-region radius gives rise to a procedure that has the potential to approach a solution of the unperturbed system. This regularizing property is shown theoretically and validated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Behling, R., Fischer, A.: A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods. Optim. Lett. 6, 927–940 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellavia, S., Cartis, C., Gould, N.I.M., Morini, B., Toint, Ph.L.: Convergence of a regularized euclidean residual algorithm for nonlinear least-squares. SIAM J. Numer. Anal. 48, 1–29 (2010)

  3. Bellavia, S., Morini, B.: Strong local convergence properties of adaptive regularized methods for nonlinear least-squares. IMA J. Numer. Anal. 35, 947–968 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Trust-region and other regularizations of linear least-squares problems. BIT 49, 21–53 (2009)

  5. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SMPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)

  6. de Sturler, E., Kilmer, M.: A regularized Gauss–Newton trust-region approach to imaging in diffuse optical tomography. SIAM J. Sci. Comput. 34, 3057–3086 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, J.Y.: Convergence rate of the trust-region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, J.Y., Pan, J.Y.: A modified trust-region algorithm for nonlinear equations with updating rule for trust-region radius. Int. J. Comput. Math. 87, 3186–3195 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, J.Y., Pan, J.Y.: An improved trust-region algorithm for nonlinear equations. Comput. Optim. Appl. 48, 59–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gasparo, M.G., Papini, A., Pasquali, A.: A two-stage method for nonlinear inverse problems. J. Comput. Appl. Math. 198, 471–482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Groetsch, C.V.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman Advanced Publishing Program, Boston (1984)

    MATH  Google Scholar 

  12. Hanke, M.: Regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Prob. 13, 79–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanke, M.: The regularizing Levenberg–Marquardt scheme is of optimal order. J. Integral Equ. Appl. 22, 259–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrici, P.: Elements of Numerical Analysis. Wiley, Chicester (1964)

    MATH  Google Scholar 

  15. Kaltenbacher, B.: Toward global convergence for strongly nonlinear ill-posed problems via a regularizing multilevel approach. Numer. Funct. Anal. Optim. 27, 637–665 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2008)

    Book  MATH  Google Scholar 

  17. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Levenberg, K.: A method for the solution of certain nonlinear problems in least-squares. Q. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  19. Macconi, M., Morini, B., Porcelli, M.: Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities. Appl. Numer. Math. 59(5), 859–876 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moré, J.J.: The Levenberg–Marquardt Algorithm: Implementation and Theory. In: Proceedings of 7th Biennial Conference, University of Dundee, Dundee, 1977, Lecture Notes in Mathematics, vol. 630, pp. 105–116. Springer, Berlin (1978)

  22. Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7, 414–417 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Book  MATH  Google Scholar 

  24. Toint, Ph.L.: Nonlinear stepsize control, trust regions and regularizations for unconstrained optimization. Optim. Methods Softw. 28, 82–95 (2013)

  25. Vogel, C.R.: A constrained least squares regularization method for nonlinear ill-posed problems. SIAM J. Control Optim. 28, 34–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vogel, C.R.: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. SIAM, Providence, RI (2002)

    Book  MATH  Google Scholar 

  27. Wang, Y., Yuan, Y.: Convergence and regularity of trust region methods for nonlinear ill-posed problems. Inverse Prob. 21, 821–838 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Yuan, Y.: On the regularity of trust region-CG algorithm for nonlinear ill-posed inverse problems with application to image deconvolution problem. Sci. China Ser. A 46, 312–325 (2003)

    MathSciNet  Google Scholar 

  29. Zhang, J.L., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Work partially supported by INdAM-GNCS, under the 2015 Project “Metodi di regolarizzazione per problemi di ottimizzazione e applicazioni”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bellavia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellavia, S., Morini, B. & Riccietti, E. On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation. Comput Optim Appl 64, 1–30 (2016). https://doi.org/10.1007/s10589-015-9806-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9806-9

Keywords