Abstract
In this paper, a novel hybrid trust-region algorithm using radial basis function (RBF) interpolations is proposed. The new algorithm is an improved version of ORBIT algorithm based on two novel ideas. Because the accuracy and stability of RBF interpolation depends on a shape parameter, so it is more appropriate to select this parameter according to the optimization problem. In the new algorithm, the appropriate shape parameter value is determined according to the optimization problem based on an effective statistical approach, while the ORBIT algorithm in all problems uses a fixed shape parameter value. In addition, the new algorithm is equipped with a new intelligent nonmonotone strategy which improves the speed of convergence, while the monotonicity of the sequence of objective function values in the ORBIT may decrease the rate of convergence, especially when an iteration is trapped near a narrow curved valley. The global convergence of the new hybrid algorithm is analyzed under some mild assumptions. The numerical results significantly indicate the superiority of the new algorithm compared with the original version.




Similar content being viewed by others
References
Ahookhosh, M., Amini, K., Peyghami, M.: A nonmonotone trust-region line search method for large-scale unconstrained optimization. Appl. Math. Modell. 36, 478–487 (2012)
Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16(1), 125–127 (1974)
Alkhamis, T.M., Hasan, M., Ahmed, M.A.: Simulated annealing for the unconstrained quadratic pseudo-Boolean function. Eur. J. Oper. Res. 108(3), 641–652 (1998)
Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)
Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16, 375–387 (2002)
Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, New York (2003)
Conn, A.R., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region algorithms to first and second order critical points. SIAM J. Optim. 20, 387–415 (2009)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91(2), 201–213 (2002)
Deng, N., Xiao, Y., Zhou, F.: Nonmonotonic trust region algorithm. J. Optim. Theory Appl. 76(2), 259–285 (1993)
Elster, C., Neumaier, A.: A grid algorithm for bound constrained optimization of noisy function. IMA J. Numer. Anal. 15, 585–608 (1995)
Esmaeilbeigi, M., Hosseini, M.M.: Dynamic node adaptive strategy for nearly singular problems on large domains. Eng. Anal. Bound. Elem. 36(9), 1311–1321 (2012)
Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Modell. 38, 3003–3015 (2014)
Fowler, K.R., Reese, J.P., Kees Jr., C.E., Dennis, J.E., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: A comparison of derivative-free optimization methods for water supply and hydraulic capture community problems. Adv. Water Res. 31, 743–757 (2008)
Franke, R.: Scattered data interpolation: tests of some method. Math. Comput. 38(157), 181–200 (1982)
Fasshauer, G.E., McCourt, M.: Kernel-based approximation methods using MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 19. World Scientific, Singapore (2015)
Fasshauer, G.E., Zhang, J.G.: On choosing optimal shape parameters for RBF approximation. Numer. Algorithms 45(1–4), 345–368 (2007)
Fletcher, R.: Practical Method of Optimization, Unconstrained Optimization. Wiley, New York (2000)
Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54, 379–398 (2007)
Fu, J., Sun, W.: Nonmonotone adaptive trust-region method for unconstrained optimization problems. Appl. Math. Comput. 163(1), 489–504 (2005)
Gould, N., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707716 (1986)
Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newtone method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1998)
Gray, G.A., Kolda, T.G.: Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization. ACM Trans. Math. Softw. 32, 485–507 (2006)
Hamrani, A., Belaidi, I., Monteiro, E., Lorong, Ph: On the factors affecting the accuracy and robustness of smoothed-radial point interpolation method. Adv. Appl. Math. Mech. 9(1), 43–72 (2017)
Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)
Hickernell, F.J., Hon, Y.C.: Radial basis function approximations as smoothing splines. Appl. Math. Comput. 102(1), 1–24 (1999)
Liu, J., Xu, X., Cui, X.: An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization. Comput. Optim. Appl. 69(1), 77–97 (2018)
Moré, J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)
Narcowich, F.J., Ward, J.D.: Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69, 84–109 (1992)
Oeuvray, R.: Trust-region methods based on radial basis functions with application to biomedical imaging. Ph.D. Thesis, EPFL, Lausanne (2005)
Oeuvray, R., Bierlaire, M.: A new derivative-free algorithm for the medical image registration problem. Int. J. Model. Simul. 27, 115–124 (2007)
Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B., Mangassarian, O.L., Ritter, K. (eds.) Nonlinear Programming, pp. 31–66. Academic, New York (1970)
Ren, Y.F., Wu, Y.: An efficient algorithm for high-dimensional function optimization. Soft. Comput. 17(6), 995–1004 (2013)
Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2–3), 193–210 (1999)
Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)
Scheuerer, M.: An alternative procedure for selecting a good value for the parameter c in RBF-interpolation. Adv. Comput. Math. 34(1), 105–126 (2011)
Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)
Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
Wild, S.M., Regis, R.G., Shoemaker, C.A.: Optimization by radial basis function interpolation in trust-region. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)
Wild, S.M., Shoemaker, C.A.: Global convergence of radial basis function trust region derivative-free algorithms. SIAM J. Optim. 21(3), 761–781 (2011)
Wright, G.B.: Radial basis function interpolation: numerical and analytical developments. Ph.D. Thesis (2003)
Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Ahmadvand, M., Esmaeilbeigi, M., Kamandi, A. et al. A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques. Comput Optim Appl 72, 499–524 (2019). https://doi.org/10.1007/s10589-018-0051-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-0051-x
Keywords
- Radial basis functions
- Unconstrained optimization
- Derivative-free algorithm
- Nonmonotone technique
- Trust-region framework
- Leave one out cross validation technique