Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A bundle method for nonsmooth DC programming with application to chance-constrained problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This work considers nonsmooth and nonconvex optimization problems whose objective and constraint functions are defined by difference-of-convex (DC) functions. We consider an infeasible bundle method based on the so-called improvement functions to compute critical points for problems of this class. Our algorithm neither employs penalization techniques nor solves subproblems with linearized constraints. The approach, which encompasses bundle methods for nonlinearly-constrained convex programs, defines trial points as solutions of strongly convex quadratic programs. Different stationarity definitions are investigated, depending on the functions’ structures. The approach is assessed in a class of nonsmooth DC-constrained optimization problems modeling chance-constrained programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. An, N.T., Nam, N.M.: Convergence analysis of a proximal point algorithm for minimizing differences of functions. Optimization 66(1), 129–147 (2017)

    Article  MathSciNet  Google Scholar 

  2. Apkarian, P., Noll, D., Rondepierre, A.: Mixed \(H_2/H_{\infty }\) control via nonsmooth optimization. SIAM J. Control Optim. 47(3), 1516–1546 (2008)

    Article  MathSciNet  Google Scholar 

  3. Aragón Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169(1), 95–118 (2018)

  4. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  Google Scholar 

  5. Banert, S., Boţ, R.I.: A general double-proximal gradient algorithm for DC programming. Math. Program. 178(1), 301–326 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bomze, I.M., Lemaréchal, C.: Necessary conditions for local optimality in difference-of-convex programming. J. Convex Anal. 17(2), 673–680 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Clarke, F.H.: Optimisation and nonsmooth analysis. Class. Appl. Math. Soc. Ind. Appl, Math (1990)

    Book  Google Scholar 

  8. de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob, Optim (2019)

    Book  Google Scholar 

  9. de Oliveira, W., Tcheou, M.P.: An inertial algorithm for DC programming. Set-Valued Var, Anal (2018)

    MATH  Google Scholar 

  10. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  11. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71(1), 37–55 (2018)

    Article  MathSciNet  Google Scholar 

  12. González Grandón, T., Heitsch, H., Henrion, R.: A joint model of probabilistic/robust constraints for gas transport management in stationary networks. Comput. Manag. Sci. 14(3), 443–460 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gotzes, C., Heitsch, H., Henrion, R., Schultz, R.: On the quantification of nomination feasibility in stationary gas networks with random load. Math. Methods Oper. Res. 84(2), 427–457 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63(1), 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, No. 305 in Grundlehren der mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1996)

  16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II, No. 306 in Grundlehren der mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1996)

  17. Hong, L.J., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach. Oper. Res. 59(3), 617–630 (2011)

    Article  MathSciNet  Google Scholar 

  18. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)

    Article  MathSciNet  Google Scholar 

  19. Le Thi, H., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17(2), 263–287 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lukáš, A., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and Benders’ decomposition. Ann. Oper. Res. (2018)

  22. Montonen, O., Joki, K.: Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J. Glob. Optim. 72(3), 403–429 (2018)

    Article  MathSciNet  Google Scholar 

  23. Noll, D.: Convergence of Non-smooth Descent Methods Using the Kurdyka-Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)

    Article  MathSciNet  Google Scholar 

  24. Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42(1), 95–118 (2017)

    Article  MathSciNet  Google Scholar 

  25. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  26. Strekalovsky, A.S., Minarchenko, I.M.: A local search method for optimisation problem with DC inequality constraints. Appl. Math. Modell. 1(58), 229–244 (2018)

    Article  Google Scholar 

  27. Tuy, H.: Convex Analysis and Global Optimization, Nonconvex Optimization and Its Applications, vol. 22. Springer, Berlin (2016)

    Book  Google Scholar 

  28. van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637–669 (2016)

    Article  MathSciNet  Google Scholar 

  29. van Ackooij, W., Henrion, R.: (Sub-)gradient formulae for probability functions of random inequality systems under gaussian distribution. SIAM/ASA J. Uncertain. Quant. 5(1), 63–87 (2017)

    Article  MathSciNet  Google Scholar 

  30. van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555–597 (2014)

    Article  MathSciNet  Google Scholar 

  31. van Ackooij, W., de Oliveira, W.: Non-smooth DC-constrained optimization: constraint qualification and minimizing methodologies. Optim. Methods Softw. 34(4), 890–920 (2019)

    Article  MathSciNet  Google Scholar 

  32. van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)

    Article  MathSciNet  Google Scholar 

  33. Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69(2), 297–324 (2018)

    Article  MathSciNet  Google Scholar 

  34. Yu, P., Pong, T.K., Lu, Z.: Convergence rate analysis of a sequential convex programming method with line search for a class of constrained difference-of-convex optimization problems, pp. 1–28 (2020). arXiv:2001.06998

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their constructive suggestions that improved the original version of this article. The fifth author acknowledges the partial financial support of PGMO (Gaspard Monge Program for Optimization and operations research) of the Hadamard Mathematics Foundation, through the project “Models for planning energy investment under uncertainty”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Javal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Auxiliary results

Auxiliary results

The following simple lemma helps compute the subdifferential of \(F_{\tau ^{}}{}(x)=\max \{f_1(x)+c_2(x)- \tau _f,\,f_2( x)+c_1(x)- \tau _c\}\).

Lemma 3

Let \({{\bar{x}}} \in X\) and \({{\bar{\tau }}}=({{\bar{\tau }}}_f,{{\bar{\tau }}}_c)\) as in (25) be given.

  1. i)

    If \(c({{\bar{x}}})>0\), then \(f_1({{\bar{x}}})+c_2({{\bar{x}}})-\bar{\tau }_f<f_2({{\bar{x}}})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c\).

  2. ii)

    If \(c({{\bar{x}}})< 0\), then \(f_1({{\bar{x}}})+c_2({{\bar{x}}})-{{\bar{\tau }}}_f> f_2({{\bar{x}}})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c\).

  3. iii)

    If \(c({{\bar{x}}})= 0\), then \(f_1({{\bar{x}}})+c_2({{\bar{x}}})-{{\bar{\tau }}}_f = f_2(\bar{x})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c\).

Proof

The definition of \({\bar{\tau }}=\big (f({{\bar{x}}})+\rho \max \{c({{\bar{x}}}),0\}, \sigma \max \{c({{\bar{x}}}),0\}\big )\) with \(\rho \ge 0\) and \(\sigma \in [0,1)\) gives:

$$\begin{aligned}&f_1({{\bar{x}}})+c_2({{\bar{x}}})-{{\bar{\tau }}}_f-(f_2({{\bar{x}}})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c) \\&\quad = (\sigma -\rho )\max \{c({{\bar{x}}}),0\} -c({{\bar{x}}}) \\&\quad = {\left\{ \begin{array}{ll} (\sigma -1-\rho )c({{\bar{x}}}) < 0 &{}\quad \text {if } c({{\bar{x}}})>0\\ -c({{\bar{x}}}) \ge 0 &{}\quad \text {if } c({{\bar{x}}})\le 0. \end{array}\right. } \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ackooij, W., Demassey, S., Javal, P. et al. A bundle method for nonsmooth DC programming with application to chance-constrained problems. Comput Optim Appl 78, 451–490 (2021). https://doi.org/10.1007/s10589-020-00241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00241-8

Keywords