Abstract
This work considers nonsmooth and nonconvex optimization problems whose objective and constraint functions are defined by difference-of-convex (DC) functions. We consider an infeasible bundle method based on the so-called improvement functions to compute critical points for problems of this class. Our algorithm neither employs penalization techniques nor solves subproblems with linearized constraints. The approach, which encompasses bundle methods for nonlinearly-constrained convex programs, defines trial points as solutions of strongly convex quadratic programs. Different stationarity definitions are investigated, depending on the functions’ structures. The approach is assessed in a class of nonsmooth DC-constrained optimization problems modeling chance-constrained programs.
Similar content being viewed by others
References
An, N.T., Nam, N.M.: Convergence analysis of a proximal point algorithm for minimizing differences of functions. Optimization 66(1), 129–147 (2017)
Apkarian, P., Noll, D., Rondepierre, A.: Mixed \(H_2/H_{\infty }\) control via nonsmooth optimization. SIAM J. Control Optim. 47(3), 1516–1546 (2008)
Aragón Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169(1), 95–118 (2018)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Banert, S., Boţ, R.I.: A general double-proximal gradient algorithm for DC programming. Math. Program. 178(1), 301–326 (2019)
Bomze, I.M., Lemaréchal, C.: Necessary conditions for local optimality in difference-of-convex programming. J. Convex Anal. 17(2), 673–680 (2010)
Clarke, F.H.: Optimisation and nonsmooth analysis. Class. Appl. Math. Soc. Ind. Appl, Math (1990)
de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob, Optim (2019)
de Oliveira, W., Tcheou, M.P.: An inertial algorithm for DC programming. Set-Valued Var, Anal (2018)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71(1), 37–55 (2018)
González Grandón, T., Heitsch, H., Henrion, R.: A joint model of probabilistic/robust constraints for gas transport management in stationary networks. Comput. Manag. Sci. 14(3), 443–460 (2017)
Gotzes, C., Heitsch, H., Henrion, R., Schultz, R.: On the quantification of nomination feasibility in stationary gas networks with random load. Math. Methods Oper. Res. 84(2), 427–457 (2016)
Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63(1), 1–28 (2016)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, No. 305 in Grundlehren der mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1996)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II, No. 306 in Grundlehren der mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1996)
Hong, L.J., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach. Oper. Res. 59(3), 617–630 (2011)
Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)
Le Thi, H., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)
Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17(2), 263–287 (2016)
Lukáš, A., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and Benders’ decomposition. Ann. Oper. Res. (2018)
Montonen, O., Joki, K.: Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J. Glob. Optim. 72(3), 403–429 (2018)
Noll, D.: Convergence of Non-smooth Descent Methods Using the Kurdyka-Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)
Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42(1), 95–118 (2017)
Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)
Strekalovsky, A.S., Minarchenko, I.M.: A local search method for optimisation problem with DC inequality constraints. Appl. Math. Modell. 1(58), 229–244 (2018)
Tuy, H.: Convex Analysis and Global Optimization, Nonconvex Optimization and Its Applications, vol. 22. Springer, Berlin (2016)
van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637–669 (2016)
van Ackooij, W., Henrion, R.: (Sub-)gradient formulae for probability functions of random inequality systems under gaussian distribution. SIAM/ASA J. Uncertain. Quant. 5(1), 63–87 (2017)
van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555–597 (2014)
van Ackooij, W., de Oliveira, W.: Non-smooth DC-constrained optimization: constraint qualification and minimizing methodologies. Optim. Methods Softw. 34(4), 890–920 (2019)
van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)
Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69(2), 297–324 (2018)
Yu, P., Pong, T.K., Lu, Z.: Convergence rate analysis of a sequential convex programming method with line search for a class of constrained difference-of-convex optimization problems, pp. 1–28 (2020). arXiv:2001.06998
Acknowledgements
The authors are grateful to two anonymous referees for their constructive suggestions that improved the original version of this article. The fifth author acknowledges the partial financial support of PGMO (Gaspard Monge Program for Optimization and operations research) of the Hadamard Mathematics Foundation, through the project “Models for planning energy investment under uncertainty”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Auxiliary results
Auxiliary results
The following simple lemma helps compute the subdifferential of \(F_{\tau ^{}}{}(x)=\max \{f_1(x)+c_2(x)- \tau _f,\,f_2( x)+c_1(x)- \tau _c\}\).
Lemma 3
Let \({{\bar{x}}} \in X\) and \({{\bar{\tau }}}=({{\bar{\tau }}}_f,{{\bar{\tau }}}_c)\) as in (25) be given.
-
i)
If \(c({{\bar{x}}})>0\), then \(f_1({{\bar{x}}})+c_2({{\bar{x}}})-\bar{\tau }_f<f_2({{\bar{x}}})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c\).
-
ii)
If \(c({{\bar{x}}})< 0\), then \(f_1({{\bar{x}}})+c_2({{\bar{x}}})-{{\bar{\tau }}}_f> f_2({{\bar{x}}})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c\).
-
iii)
If \(c({{\bar{x}}})= 0\), then \(f_1({{\bar{x}}})+c_2({{\bar{x}}})-{{\bar{\tau }}}_f = f_2(\bar{x})+c_1({{\bar{x}}})- {{\bar{\tau }}}_c\).
Proof
The definition of \({\bar{\tau }}=\big (f({{\bar{x}}})+\rho \max \{c({{\bar{x}}}),0\}, \sigma \max \{c({{\bar{x}}}),0\}\big )\) with \(\rho \ge 0\) and \(\sigma \in [0,1)\) gives:
\(\square \)
Rights and permissions
About this article
Cite this article
van Ackooij, W., Demassey, S., Javal, P. et al. A bundle method for nonsmooth DC programming with application to chance-constrained problems. Comput Optim Appl 78, 451–490 (2021). https://doi.org/10.1007/s10589-020-00241-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-020-00241-8