Abstract
Modeling and programming tools for neighborhood search often support invariants, i.e., data structures specified declaratively and automatically maintained incrementally under changes. This paper considers invariants for longest paths in directed acyclic graphs, a fundamental abstraction for many applications. It presents bounded incremental algorithms for arc insertion and deletion which run in O(∥δ∥ + |δ| log|δ|) time and O(∥δ∥) time respectively, where |δ| and ∥δ∥ are measures of the change in the input and output. The paper also shows how to generalize the algorithm to various classes of multiple insertions/deletions encountered in scheduling applications. Preliminary experimental results show that the algorithms behave well in practice.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aarts, E., van Laarhoven, P., Lenstra, J., & Ulder, N. (1994). A computational study of local search algorithms for job shop scheduling. ORSA J. Comput. 6: 113–125.
Alpern, B., Carle, A., Rosen, B., Sweeney, P., & Zadeck, K. (1990). Incremental evaluation of computational circuits. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-90), San Francisco, California (January).
Codognet, C., & Diaz, D. (2001). Yet another local search method for constraint solving. In Proceedings of the International Symposium on Stochastic Algorithms: Foundations and Applications (SAGA 2001), Berlin, Germany (December), pages 73–90.
Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artiff. Intell. 49: 61–95.
Dell’Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop scheduling problem. Ann. Oper. Res. 41: 231–252.
Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach. 34: 596–615.
Di Gaspero, L., & Schaerf, A. (2002). Optimization Software Class Libraries, chapter Writing Local Search Algorithms Using EasyLocal++. Kluwer, Boston
Galinier, P., & Hao, J.-K. (2000). A general approach for constraint solving by local search. In CP-AI-OR’00, Paderborn, Germany (March).
Katriel, I. (2004). Dynamic heaviest paths in DAGs with arbitrary edge weights. In CP-AI-OR’04, Springer Verlag, Nice, France (April).
Katriel, I., & Bodlaender, H. L. (2005). Online topological ordering. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2005), Vancouver, Canada.
Laburthe, F., & Caseau, Y. (1998). SALSA: A language for search algorithms. In CP’98, Springer Verlag, Pisa, Italy (October).
Michel, L., & Van Hentenryck, P. (1992). A constraint-based architecture for local search. In OOPLSA’02, Seattle, WA (November). ACM SIGPLAN Notices, ACM Press, New York (2002).
Michel, L., & Van Hentenryck, P. (2000). Localizer. Constraints 5: 41–82.
Michel, L., & Van Hentenryck, P. (2001). Localizer++: An open library for local search. Technical Report CS-01-02, Brown University.
Michel, L., & Van Hentenryck, P. (2003). Maintaining longest path incrementally. In CP’03, Kinsale, Ireland (September).
Michel, L., & Van Hentenryck, P. (2004). A simple tabu search for warehouse location. Eur. J. Oper. Res. 157/3: 576–591.
Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Manag. Sci. 42(6): 797–813.
Ramalingam, G., & Reps, T. (1996). An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 21: 267–305.
Ramalingam, G., & Reps, T. (1996). On the computational complexity of dynamic graph problems. Theor. Comput. Sci. 158: 233–277.
Ramalingam, G., Song, J., Joscovicz, L., & Miller, R. E. (1999). Solving difference constraints incrementally. Algorithmica 23: 261–275.
Reps, T. (1982). Optimal-time incremental semantic analysis for syntax-directed editors. In Proceedings of the 9th ACM Symposium on Principles of Programming Languages (POPL-82), ACM Press.
Shaw, P., De Backer, B., & Furnon, V. (2002). Improved local search for CP toolkits. Ann. Oper. Res. 115: 31–50.
Tarjan, R. (1985). Amortized computational complexity. SIAM J. Algebr. Discrete Methods 6: 306–318.
Thorup, M. (2003). Integer priority queues with decrease key in constant time and the single source shortest paths problems. In Proc. of the 35th ACM Symp. on Theory of Computing (STOC), pages 149–158.
Voss, S., & Woodruff, D. (2002). Optimization Software Class Libraries. Kluwer, Boston.
Voudouris, C., Dorne, R., Lesaint, D., & Liret, A. (2001). iOpt: A software toolkit for heuristic search methods. In CP’01, Springer Verlag, Paphos, Cyprus (October).
Walser, J. (1998). Integer Optimization by Local Search. Springer Verlag, Berlin
Werner, F., & Winkler, A. (1995). Insertion techniques for the heuristic solution of the job-shop problem. Discrete Appl. Math. 58(2): 191–211.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Katriel, I., Michel, L. & Van Hentenryck, P. Maintaining Longest Paths Incrementally. Constraints 10, 159–183 (2005). https://doi.org/10.1007/s10601-005-0554-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10601-005-0554-9