Abstract
Arithmetic constraints on integer intervals are supported in many constraint programming systems. We study here a number of approaches to implement constraint propagation for these constraints. To describe them we introduce integer interval arithmetic. Each approach is explained using appropriate proof rules that reduce the variable domains. We compare these approaches using a set of benchmarks. For the most promising approach we provide results that characterize the effect of constraint propagation.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Apt, K. R. (1998). A proof theoretic view of constraint programming. Fundamenta Informaticae, 33(3), 263–293. Available via http://arXiv.org/archive/cs/.
Apt, K. R. (2003). Principles of constraint programming. Cambridge: Cambridge University Press.
Apt, K. R., & Zoeteweij, P. (2004). A comparative study of arithmetic constraints on integer intervals. In K. R. Apt, F. Fages, F. Rossi, P. Szeredi, & J. Váncza (Eds.), Recent advances in constraints. Lecture notes in artificial intelligence, vol. 3010, pp. 1–24. Available via http://xxx.lanl.gov/abs/cs.DS/0403016.
Benhamou, F., Goualard, F., Granvilliers, L., & Puget, J.-F. (1999). Revising hull and box consistency. In Proceedings of the 16th International Conference on Logic Programming (ICLP’99), pp. 230–244. MIT Press.
Benhamou, F., McAllester, D., & Van Hentenryck, P. (1994). CLP(intervals) revisited. In Proceedings of the 1994 International Symposium on Logic programming, pp. 124–138. MIT Press.
Benhamou, F., & Older, W. J. (1997). Applying interval arithmetic to real, integer, and Boolean constraints. Journal of Logic Programming, 32(1), 1–24.
Cheadle, A. M., Harvey, W., Sadler, A. J., Schimpf, J., Shen, K., & Wallace, M. G. (2003). ECLiPSe: a tutorial introduction. Available from http://www.eclipse-clp.org/.
Codognet, P., & Diaz, D. (1996). Compiling constraints in clp(fd). Journal of Logic Programming, 27(3), 185–226.
Collaviza, H., Delobel, F., & Rueher, M. (1999). Comparing partial consistencies. Reliable Computing, 5(3), 213–228.
Dubrovsky, V., & Shvetsov, A. (1995). Quantum Cyberteaser. Available from http://www.nsta.org/quantum/kyotoarc.asp, (May/June).
GNU MP: The GNU Multiple Precision Library (2006). Edition 4.2.1. Available from http://www.gmplib.org, (September).
Goualard, F., & Granvilliers, L. (2005). Controlled propagation in continuous numerical constraint networks. In Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 377–382. ACM Press.
Granvilliers, L. (2004). RealPaver user’s manual: Solving nonlinear constraints by interval computations. Edition 0.4, for RealPaver Version 0.4. Available from http://sourceforge.net/projects/realpaver, (August).
Harvey, W., & Stuckey, P. J. (2003). Improving linear constraint propagation by changing constraint representation. Constraints, 8(2), 173–207.
Hickey, T. J., Ju, Q., & Van Emden M. H. (2001). Interval arithmetic: From principles to implementation. Journal of the ACM, 48(5), 1038–1068.
Marriott, K., & Stuckey, P. (1998). Programming with constraints: An introduction. Cambridge, MA: MIT Press.
Moore, R. E. (1966). Interval analysis. Englewood Cliffs, NJ: Prentice-Hall.
Ratz, D. (1996). Inclusion isotone extended interval arithmetic: A toolbox update. Technical Report D-76128, University of Karlsruhe.
Schulte, C., & Smolka, G. (2002). Finite domain constraint programming in Oz. A tutorial. Available from http://www.mozart-oz.org/documentation/fdt/, Version 1.3.1 (20040616), (August).
Schulte, C., & Stuckey, P. J. (2005). When do bounds and domain propagation lead to the same search space? Transactions on Programming Languages and Systems, 27(3), 388–425.
Van Hentenryck, P., Michel, L., & Deville, Y. (1997). Numerica: A modeling language for global optimization. Cambridge, MA: MIT Press.
Wallace, R. J., & Freuder, E. F. (1992). Ordering heuristics for arc consistency algorithms. Available from http://4c.ucc.ie/web/pubs.jsp.
Zoeteweij, P. (2003). Opensolver: A coordination-enabled abstract branch-and-prune tree search engine (abstract). In F. Rossi (Ed.), Proceedings of CP 2003. LNCS, vol. 2833, p. 1002. Springer.
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of the second author was supported by NWO, The Netherlands Organization for Scientific Research, under project number 612.069.003.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Apt, K.R., Zoeteweij, P. An Analysis of Arithmetic Constraints on Integer Intervals. Constraints 12, 429–468 (2007). https://doi.org/10.1007/s10601-007-9017-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10601-007-9017-9