Abstract
The Golomb ruler problem is a very hard combinatorial optimization problem that has been tackled with many different approaches, such as constraint programming (CP), local search (LS), and evolutionary algorithms (EAs), among other techniques. This paper describes several local search-based hybrid algorithms to find optimal or near-optimal Golomb rulers. These algorithms are based on both stochastic methods and systematic techniques. More specifically, the algorithms combine ideas from greedy randomized adaptive search procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after the observation of the previous one. With these algorithms we are capable of solving large rulers with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16 marks. In addition, the paper also provides an empirical study of the fitness landscape of the problem with the aim of shedding some light about the question of what makes the Golomb ruler problem hard for certain classes of algorithm.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adenso-Díaz, B., & Laguna, M. (2006). Fine tuning of algorithms using fractional experimental designs and local search. Operations Research, 54(1), 99–114.
Babcock, W. C. (1953). Intermodulation interference in radio systems. Bell Systems Technical Journal, 32, 63–73.
Barták, R. (2003). Practical constraints: A tutorial on modelling with constraints. In J. Figwer (Ed.), 5th workshop on constraint programming for decision and control (pp. 7–17). Poland: Gliwice.
Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6, 154–160.
Bierwirth, C., Mattfeld, D.C., & Watson, J.-P. (2004). Landscape regularity and random walks for the job shop scheduling problem. In J. Gottlieb, & G. R. Raidl (Eds.), Evolutionary computation in combinatorial optimization. Lecture Notes in Computer Science, Vol. 3004 (pp. 21–30). Berlin: Springer.
Birattari, M., Stützle, T. Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Lagndon et al. (Eds.), 2002 Genetic and evolutionary computation conference (GECCO) (pp. 11–18). San Francisco, CA: Morgan Kaufmann.
Biraud, F., Blum, E., & Ribes, J. (1974). On optimum synthetic linear arrays with applications to radioastronomy. IEEE Transactions on Antennas and Propagation, 22(1), 108–109.
Bloom, G. S., & Golomb, S. W. (1977). Aplications of numbered undirected graphs. Proceedings of the IEEE, 65(4), 562–570.
Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters, 16, 101–113.
Cotta, C., Dotú, I., Fernández, A. J., & Van Hentenryck, P. (2006). A memetic approach to golomb rulers. In T. P. Runarsson et al. (Eds.), Parallel problem solving from nature IX. Lecture notes in computer science, vol. 4193 (pp. 252–261). Berlin Heidelberg: Springer-Verlag.
Cotta, C., & Fernández, A. J. (2004.) A hybrid GRASP-evolutionary algorithm approach to Golomb ruler search. In Xin Yao et al. (Eds.), Parallel problem solving from nature VIII. Lecture notes in computer science, vol. 3242 (pp. 481–490). Berlin Heidelberg: Springer.
Cotta, C., & Fernández, A. J. (2005). Analyzing fitness landscapes for the optimal Golomb ruler problem. In J. Gottlieb & G. R. Raidl (Eds.), Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol. 3248 (pp. 68–79). Berlin Heidelberg: Springer.
Cotta, C., & Troya, J. M. (2003). Embedding branch and bound within evolutionary algorithms. Applied Intelligence, 18(2), 137–153.
Díaz, D., & Codognet, P. (2000). GNU Prolog: Beyond compiling Prolog to C. In E. Pontelli, & V. Santos Costa (Eds.), 2nd International workshop on practical aspects of declarative languages (PADL’2000). Lecture notes in computer science, vol. 1753 (pp. 81–92). Boston, MA: Springer.
Dewdney, A. K. (1985). The search for an invisible ruler that will help radio astronomers measure the Earth, computer recreations. Scientific American, Dec: 16–26.
Dollas, A., Rankin, W. T., & McCracken, D. (1998). A new algorithm for Golomb ruler derivation and proof of the 19 mark ruler. IEEE Transactions on Information Theory, 44, 379–382.
Dotú, I., & Van Hentenryck, P. (2005). A simple hybrid evolutionary algorithm for finding golomb rulers. In D. W. Corne et al. (Eds.), 2005 Congress on evolutionary computation (CEC2005), vol. 3 (pp. 2018–2023). Edinburgh, Scotland: IEEE.
Fang, R. J. F., & Sandrin, W. A. (1977). Carrier frequency assignment for non-linear repeaters. Comsat Technical Review, 7, 227–245.
Feeney, B. (2003) Determining Optimum and Near-optimum Golomb Rulers Using Genetic Algorithms. Master thesis, Computer Science, University College Cork (October).
Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.
Galinier, P., Jaumard, B., Morales, R., & Pesant, G. (2001). A constraint-based approach to the Golomb ruler problem. In 3rd International workshop on integration of AI and OR techniques (CP-AI-OR’2001).
Garry, M., Vanderschel, D., et al. (1999). In search of the optimal 20, 21 & 22 mark Golomb rulers. GVANT project. http://members.aol.com/golomb20/index.html.
Gilbert, P., & Postpischil, E. (1994). There are no new homometric Golomb ruler pairs with 12 marks or less. Experimental Mathematics, 3(2), 147–152.
Giraud-Carrier, C. (2002). Unifying learning with evolution through Baldwinian evolution and lamarckism: A case study. In H-J. Zimmermann, G. Tselentis, M. van Someren, & G. Dounias (Eds.), Advances in computational intelligence and learning: Methods and applications (pp. 159–168). Kluwer.
Glover, F. (1989a). Tabu search—Part I. ORSA Journal of Computing, 1(3), 190–206.
Glover, F. (1989b). Tabu search—Part II. ORSA Journal of Computing, 2(1), 4–31.
Glover, F. (1997). A template for scatter search and path relinking. Lecture Notes in Computer Science, 1363, 13–54.
Goldberg, D. E., & Lingle Jr., D. E., (1985). Alleles, loci and the traveling salesman problem. In J. J. Grefenstette (Ed.), Proceedings of an international conference on genetic algorithms. Hillsdale: Lawrence Erlbaum Associates.
Houck, C., Joines, J. A., Kay, M. G., & Wilson, J. R. (1997). Empirical investigation of the benefits of partial lamarckianism. Evolutionary Computation, 5(1), 31–60.
Jain, A. K., Murty, N. M., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.
Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. Thesis, Santa Fe Institute, University of New Mexico, Alburquerque (May).
Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In L. J. Eshelman (Ed.), Proceedings of the 6th international conference on genetic algorithms (pp. 184–192). San Francisco, CA: Morgan Kaufmann.
Julstrom, B. A. (1999). Comparing darwinian, baldwinian, and lamarckian search in a genetic algorithm for the 4-cycle problem. In S. Brave, & A.S. Wu. (Ed.), Late breaking papers at the 1999 genetic and evolutionary computation conference, Orlando, FL (pp. 134–138).
Klove, T. (1989). Bounds and construction for difference triangle sets. IEEE Transactions on Information Theory, 35, 879–886 (July).
Laguna, M., & Martí, R. (2003). Scatter search. Methodology and implementations in C. Boston, MA: Kluwer.
Lehmann, E. L., & D’Abrera, H. J. M. (1998). Nonparametrics: Statistical methods based on rRanks. Englewood Cliffs, NJ: Prentice-Hall.
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In 5-th Berkeley symposium on mathematical statistics and probability, vol. 1 (pp. 281–297). Berkeley: University of California Press.
Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and the structure of the fitness landscape. In R. K. Belew, & L. B. Booker (Eds.), Proceedings of the fourth international conference on genetic algorithms (pp. 143–150). San Mateo, CA: Morgan Kaufmann.
McCracken, D. (1991). Minimum redundancy linear arrays. Senior Thesis, Duke University, Durham, NC (January).
Mirchandani, P., & Francis, R. (1990). Discrete location theory. New York: Wiley.
Moscato, P. (1999). Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 219–234). Maidenhead, Berkshire, UK: McGraw-Hill.
Moscato, P. & Cotta, C. (2003). A gentle introduction to memetic algorithms. In F. Glover, & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 105–144). Boston, MA: Kluwer.
Moscato, P., & Cotta, C. (2007). Memetic algorithms. In T. González (Ed.), Handbook of approximation algorithms and metaheuristics, chapter 27 (pp. 27-1–27-12). New York: Taylor & Francis.
Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In G. C. Onwubolu, & B. V. Babu (Eds.), New optimization techniques in engineering (pp. 53–85). Berlin Heidelberg: Springer.
OGR project (1998). http://www.distributed.net/ogr/, on-going since September 14, 1998.
Pereira, F. B., Tavares, J., & Costa, E. (2003). Golomb rulers: The advantage of evolution. In F. Moura-Pires, & S. Abreu (Eds.), Progress in artificial intelligence, 11th Portuguese conference on artificial intelligence. Lecture notes in computer science, vol. 2902 (pp. 29–42). Berlin Heidelberg: Springer.
Prais, M., & Ribeiro, C. C. (2000a). Parameter variation in GRASP procedures. Investigación Operativa, 9, 1–20.
Prais, M., & Ribeiro, C. C. (2000b). Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing, 12, 164–176.
Prestwich, S. (2001). Trading completeness for scalability: Hybrid search for cliques and rulers. In Third international workshop on the integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR-01), Ashford, Kent, England (pp. 159–174).
Radcliffe, N. J. (1991). Equivalence class analysis of genetic algorithms. Complex Systems, 5, 183–205.
Rankin, W. T. (1993). Optimal Golomb rulers: An exhaustive parallel search implementation. Master Thesis, Duke University Electrical Engineering Dept., Durham, NC (December).
Reeves, C. (1999). Landscapes, operators and heuristic search. Annals of Operational Research, 86, 473–490.
Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover, & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Boston, MA: Kluwer.
Robbins, J., Gagliardi, R., & Taylor, H. (1987). Acquisition sequences in PPM communications. IEEE Transactions on Information Theory, 33, 738–744.
Robinson, J. P., & Bernstein, A. J. (1967). A class of binary recurrent codes with limited error propagation. IEEE Transactions on Information Theory, 13, 106–113.
Schneider, W. (2002). Golomb rulers. MATHEWS: The archive of recreational mathematics. http://www.wschnei.de/number-theory/golomb-rulers.html.
Shearer, J. B. (1990). Some new optimum Golomb rulers. IEEE Transactions on Information Theory, 36, 183–184 (January).
Shearer, J. B. (2001). Golomb ruler table. Mathematics Department, IBM Research. http://www.research.ibm.com/people/s/shearer/grtab.html.
Smith, B.M., & Walsh, T. (1999). Modelling the Golomb ruler problem. In Workshop on non-binary constraints (IJCAI’99), Stockholm.
Soliday, S. W., Homaifar, A., & Lebby, G. L. (1995). Genetic algorithm approach to the search for Golomb rulers. In L. J. Eshelman (Ed.), 6th International conference on genetic algorithms (ICGA’95) (pp. 528–535). Pittsburgh, PA: Morgan Kaufmann.
Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F. Jones (Ed.), 6th International congress on genetics, vol. 1 (pp. 356–366). Menasha, WI: Brooklyn Botanic Garden.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Cotta, C., Dotú, I., Fernández, A.J. et al. Local Search-based Hybrid Algorithms for Finding Golomb Rulers. Constraints 12, 263–291 (2007). https://doi.org/10.1007/s10601-007-9020-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10601-007-9020-1