Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topic model for analyzing purchase data with price information

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

We propose a new topic model for analyzing purchase data with price information. Price is an important factor in consumer purchase behavior. The proposed model assumes that a topic has its own price distributions for each item as well as an item distribution. The topic proportions, which represent a user’s purchase tendency, are influenced by the user’s purchased items and their prices. By estimating the mean and the variance of the price for each topic, the proposed model can cluster related items taking their price ranges into consideration. We present its efficient inference procedure based on collapsed Gibbs sampling. Experiments on real purchase data demonstrate the effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Blei DM, Jordan MI (2003) Modeling annotated data. In: SIGIR ’03, pp 127–134

  • Blei DM, Lafferty JD (2006) Dynamic topic models. In: ICML ’06, pp 113–120

  • Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3: 993–1022

    MATH  Google Scholar 

  • Das AS, Datar M, Garg A, Rajaram S (2007) Google news personalization: scalable online collaborative filtering. In: WWW ’07, pp 271–280

  • Fu W, Song L, Xing EP (2009) Dynamic mixed membership block model for evolving networks. In: ICML ’09, pp 329–336

  • Griffiths TL, Steyvers M (2004) Finding scientific topics. Proc Nat Acad Sci 101(1):5228–5235

    Google Scholar 

  • Hamuro Y, Katoh N, Matsuda Y, Yada K (1998) Mining pharmacy data helps to make profits. Data Min Knowl Disc 2(4): 391–398

    Article  Google Scholar 

  • Hofmann T (1999) Probabilistic latent semantic analysis. In: UAI ’99, pp 289–296

  • Hofmann T (2003) Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: SIGIR ’03. ACM Press, New York, pp 259–266

  • Hoffman M, Blei D, Bach F (2010) Online learning for latent Dirichlet allocation. In: NIPS ’10

  • Iwata T, Saito K, Yamada T (2006) Recommendation methods for extending subscription periods. In: KDD ’06, pp 574–579

  • Iwata T, Watanabe S, Yamada T, Ueda N (2009) Topic tracking model for analyzing consumer purchase behavior. In: IJCAI ’09, pp 1427–1432

  • Iwata T, Yamada T, Sakurai Y, Ueda N (2010) Online multiscale dynamic topic models. In: KDD ’10, pp 663–672

  • Jin X, Zhou Y, Mobasher B (2004) Web usage mining based on probabilistic latent semantic analysis. In: KDD ’04, pp 197–205

  • Li M, Dias BM, Jarman I, El-Deredy W, Lisboa PJ (2009) Grocery shopping recommendations based on basket-sensitive random walk. In: KDD ’09, pp 1215–1224

  • Mimno D, Wallach HM, Naradowsky J, Smith DA, McCallum A (2009) Polylingual topic models. In: EMNLP ’09, pp 880–889

  • Minka T (2000) Estimating a Dirichlet distribution. Technical report. MIT, Cambridge

  • Minka T, Lafferty J (2002) Expectation-propagation for the generative aspect model. In: UAI ’02, pp 352–359

  • Newman D, Asuncion A, Smyth P, Welling M (2007) Distributed inference for latent Dirichlet allocation. In: NIPS ’07, pp 1081–1088

  • Nijs VR, Dekimpe MG, Steenkamps JBE, Hanssens DM (2001) The category-demand effects of price promotions. Market Sci 20(1): 1–22

    Article  Google Scholar 

  • Raju JS (1992) The effect of price propotion on variability in product category sales. Market Sci 11(3): 207–220

    Article  MathSciNet  Google Scholar 

  • Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P (2004) The author-topic model for authors and documents. In: UAI ’04, pp 487–494

  • Sato I, Kurihara K, Nakagawa H (2010) Deterministic single-pass algorithm for lda. In: NIPS ’10

  • Shani G, Heckerman D, Brafman RI (2005) An MDP-based recommender system. J Mach Learn Res 6: 1265–1295

    MathSciNet  MATH  Google Scholar 

  • Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476): 1566–1581

    Article  MathSciNet  MATH  Google Scholar 

  • Teh YW, Newman D, Welling M (2006) A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation. In: NIPS ’06, 1378–1385

  • Thomas S, Chakravarthy S. (2000) Incremental mining of constrained associations. In: HIPC ’00, 547–558

  • Wallach HM (2006) Topic modeling: Beyond bag-of-words. In: ICML ’06, 977–984

  • Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: KDD ’06, 424–433

  • Williamson S, Wang C, Heller K, Blei D (2010) The IBP-compound dirichlet process and its application to focused topic modeling. In: ICML ’10, 1151–1158

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoharu Iwata.

Additional information

Responsible editor: Bing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, T., Sawada, H. Topic model for analyzing purchase data with price information. Data Min Knowl Disc 26, 559–573 (2013). https://doi.org/10.1007/s10618-012-0281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-012-0281-y

Keywords