Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decomposition-by-normalization (DBN): leveraging approximate functional dependencies for efficient CP and tucker decompositions

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For many multi-dimensional data applications, tensor operations as well as relational operations both need to be supported throughout the data lifecycle. Tensor based representations (including two widely used tensor decompositions, CP and Tucker decompositions) are proven to be effective in multi-aspect data analysis and tensor decomposition is an important tool for capturing high-order structures in multi-dimensional data. Although tensor decomposition is shown to be effective for multi-dimensional data analysis, the cost of tensor decomposition is often very high. Since the number of modes of the tensor data is one of the main factors contributing to the costs of the tensor operations, in this paper, we focus on reducing the modality of the input tensors to tackle the computational cost of the tensor decomposition process. We propose a novel decomposition-by-normalization scheme that first normalizes the given relation into smaller tensors based on the functional dependencies of the relation, decomposes these smaller tensors, and then recombines the sub-results to obtain the overall decomposition. The decomposition and recombination steps of the decomposition-by-normalization scheme fit naturally in settings with multiple cores. This leads to a highly efficient, effective, and parallelized decomposition-by-normalization algorithm for both dense and sparse tensors for CP and Tucker decompositions. Experimental results confirm the efficiency and effectiveness of the proposed decomposition-by-normalization scheme compared to the conventional nonnegative CP decomposition and Tucker decomposition approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Note that the cost increases linearly in the size of the input relation (Huhtala et al. 1999).

    Table 10 Different attribute sets, join attributes (\(X\)), supports of \(X\) (the lowest of all the supports of \(X \rightarrow *\)), and execution times for FDs discovery for D1-D18 where \(A_n\) is the \(n\)th attribute of each data set
  2. Note that the fit is low in this experiment due to the extremely tight target rank (10) used for the decomposition for a very high dimensional tensor. The fit obtained by the conventional tensor decomposition technique, NNCP-CP-ALS, on the same tensor with the same rank is also similarly low, 0.0028.

References

  • Allen GI (2012) Sparse higher-order principal components analysis. In: Proceedings of the 15th international conference on artificial intelligence and statistics (AISTATS)

  • Andersson CA, Bro R (2000) The n-way toolbox for matlab. Chemom Intell Lab Syst 52(1):1–4. http://www.models.life.ku.dk/source/nwaytoolbox/

  • Antikainen J, Havel J, Josth JR, Herout A, Zemcik P, Hauta-Kasari M (2011) Nonnegative tensor factorization accelerated using gpgpu. IEEE Trans Parallel Distrib Syst 22(7):1135–1141

    Article  Google Scholar 

  • Bader BW, Kolda TG (2006) Efficient matlab computations with sparse and factored tensors. Technical Report SAND2006-7592, Sandia National Laboratories

  • Bader BW, Kolda TG (2007) Matlab tensor toolbox version 2.2. http://csmr.ca.sandia.gov/tgkolda/TensorToolbox/

  • Carroll J, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika 35:283–319

    Article  MATH  Google Scholar 

  • Chu W, Ghahramani Z (2009) Probabilistic models for incomplete multi-dimensional arrays. In: Proceedings of the 12th international conference on artificial intelligence and statistics

  • Elmasri R, Navathe SB (1994) Fundamentals of database systems, 2nd edn. Benjamin-Cummings, Redwood City

    MATH  Google Scholar 

  • Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, New York

    MATH  Google Scholar 

  • Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16(1):84

    Google Scholar 

  • Hoff PD (2011) Hierarchical multilinear models for multiway data. Comput Stat Data Anal 55(1):530–543. doi:10.1016/j.csda.2010.05.020

    Article  MATH  MathSciNet  Google Scholar 

  • Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H (1999) Tane: an efficient algorithm for discovering functional and approximate dependencies. Comput J 42(2):100–111

    Article  MATH  Google Scholar 

  • Ilyas IF, Markl V, Haas PJ, Brown P, Aboulnaga (2004) A Cords: automatic discovery of correlations and soft functional dependencies. In: SIGMOD conference, pp. 647–658

  • Karmarker N, Karp RM (1983) The differencing method of set partitioning. Technical report, Berkeley

  • Kim M, Candan KS (2011) Approximate tensor decomposition within a tensor-relational algebraic framework. In: Proceedings of the 20th ACM international conference on information and knowledge management, pp. 1737–1742 doi:10.1145/2063576.2063827

  • Kolda T, Sun J (2008) Scalable tensor decompositions for multi-aspect data mining. In: Proceedings of the 8th IEEE international conference on data mining, pp. 363–372. doi:10.1109/ICDM.2008.89

  • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500. doi:10.1137/07070111X

    Article  MATH  MathSciNet  Google Scholar 

  • Kolda TG, Bader BW, Kenny JP (2005) Higher-order web link analysis using multilinear algebra. In: Proceedings of the 5th IEEE international conference on data mining, pp. 242–249. doi:10.1109/ICDM.2005.77

  • Kruskal JB (1977) Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebr Appl 18(2):95–138

    Article  MATH  MathSciNet  Google Scholar 

  • Lopes S, Petit JM, Lakhal L (2000) Efficient discovery of functional dependencies and armstrong relations. In: Proceedings of the 7th international conference on extending database technology: advances in database technology, EDBT ’00. Springer, London, pp. 350–364

  • Mahoney MW, Maggioni M, Drineas P (2006) Tensor-cur decompositions for tensor-based data. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 327–336. doi:10.1145/1150402.1150440

  • Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News 23(5):1–18

    Google Scholar 

  • Mannila H, Räihä KJ (1992) On the complexity of inferring functional dependencies. Discret Appl Math 40(2):237–243. doi:10.1016/0166-218X(92)90031-5

    Article  MATH  Google Scholar 

  • Movielens dataset from grouplens research group (2013). http://www.grouplens.org

  • Phan AH, Cichocki A (2011) Parafac algorithms for large-scale problems. Neurocomputing 74(11):1970–1984. doi:10.1016/j.neucom.2010.06.030

    Article  Google Scholar 

  • Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  • Ruggles S, Sobek M (1997) Integrated public use microdata series: Version 2.0 minneapolis: historical census projects http://www.ipums.umn.edu/

  • Sanchez E, Kowalski BR (1986) Generalized rank annihilation factor analysis. Anal Chem 58(2):496–499. doi:10.1021/ac00293a054

    Article  Google Scholar 

  • Sanchez E, Kowalski BR (1990) Tensorial resolution: a direct trilinear decomposition. J Chemom 4(1):29–45. doi:10.1002/cem.1180040105

    Article  Google Scholar 

  • Stoer M, Wagner F (1997) A simple min-cut algorithm. J ACM 44(4):585–591. doi:10.1145/263867.263872

    Article  MATH  MathSciNet  Google Scholar 

  • Sun J, Papadimitriou S, Lin CY, Cao N, Liu S, Qian W (2009) Multivis: content-based social network exploration through multi-way visual analysis. In: Proceedings SDM, vol 9. SIAM, pp. 1063–1074

  • Sun J, Tao D, Papadimitriou S, Yu PS, Faloutsos C (2008) Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data 2(3):11:1–11:37. doi:10.1145/1409620.1409621

    Article  Google Scholar 

  • Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp. 990–998

  • Tsourakakis CE (2010) Mach: fast randomized tensor decompositions. In: Proceedings of the 10th SIAM International Conference on Data Mining, pp. 689–700

  • Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311. doi:10.1007/BF02289464

    Article  MathSciNet  Google Scholar 

  • Wyss C, Giannella C, Robertson EL (2001) Fastfds: a heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances: extended abstract. In: Proceedings of the Third International Conference on Data Warehousing and Knowledge Discovery, DaWaK ’01. Springer, London, pp 101–110

  • Xu Z, Yan F, Qi A (2012) Infinite tucker decomposition: nonparametric bayesian models for multiway data analysis. In: ICML. icml.cc/Omnipress

  • Zhang Q, Berry M, Lamb B, Samuel T, Allen G, Nabrzyski J, Seidel E, van Albada G, Dongarra J, Sloot P (2009) A parallel nonnegative tensor factorization algorithm for mining global climate data, vol 5545. Springer, Berlin/Heidelberg, pp. 405–415

  • Zhou G, He Z, Zhang Y, Zhao Q, Cichocki A (2009) Canonical polyadic decomposition: from 3-way to n-way. In: Eighth international conference on computational intelligence and security (CIS), pp 391–395. doi:10.1109/CIS.2012.94

Download references

Acknowledgments

This work is partially funded by NSF Grants #116394 “RanKloud: Data Partitioning and Resource Allocation Strategies for Scalable Multimedia and Social Media Analysis”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mijung Kim.

Additional information

Responsible editors: Chih-Jen Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Candan, K.S. Decomposition-by-normalization (DBN): leveraging approximate functional dependencies for efficient CP and tucker decompositions. Data Min Knowl Disc 30, 1–46 (2016). https://doi.org/10.1007/s10618-015-0401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-015-0401-6

Keywords