Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On optimal codes with w-identifiable parent property

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(\mathcal{C}\) be a q-ary code of length n and \(X \subseteq \mathcal{C}\), then d is called a descendant of X if d i ∈ {x i : xX} for all 1 ≤ i ≤ n. \(\mathcal{C}\) is said to be a w-identifiable parent property code (w-IPP code for short) if whenever d is a descendant of w (or fewer) codewords, one can always identify at least one of the parent codewords in \(\mathcal{C}\). In this paper, we give constructions for w-IPP codes of length w + 1. Furthermore, we show that F w (w + 1,q), the maximum cardinality of a w-IPP q-ary code of length w + 1, satisfies \(|\fancyscript{G}_{h(q)}| \leq F_{w}(w+1,q) \leq |\fancyscript{G}_{h(q)}|+6\), where \(\fancyscript{G}_{h(q)}\) is a well-defined code graph. Finally, we give an efficient (O(q w+1)) algorithm to find the values of F w (w + 1,q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N and Staw U (2004). New bounds on parent-identifying codes: the case of multiple parents. Combinatorics Prob Comput 13(6): 795–807

    Article  MATH  Google Scholar 

  2. Boneh D and Shaw J (1998). Collusion-secure fingerprinting for digital data. IEEE Trans Inform Theory 44: 1897–1905

    Article  MATH  Google Scholar 

  3. Hollmann HDL, van Lint JH, Linnartz J-P and Tolhuizen LMGM (1998). On codes with the identifiable parent property. J Combin Theory Ser A 82: 121–133

    Article  MATH  Google Scholar 

  4. Roman S (1992). Coding and information theory. Springer-Verlag, Berlin, New York

    MATH  Google Scholar 

  5. Staddon JN, Stinson DR and Wei T (2001). Combinatorial properties of frameproof and traceability code. IEEE Trans Inform Theory 47: 1024–1049

    Article  Google Scholar 

  6. Tô VD and Safavi-naini R (2004). On the maximal codes of length 3 with the 2-identifiable parent property. SIAM J Discrete Math 17: 548–570

    Article  MATH  Google Scholar 

  7. Xiong Y, Ma J. On codes with w-identifiable parent property (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xiong.

Additional information

Communicated by P. Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Ma, J. & Shen, H. On optimal codes with w-identifiable parent property. Des. Codes Cryptogr. 45, 65–90 (2007). https://doi.org/10.1007/s10623-007-9083-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9083-4

Keywords

AMS Classification