Abstract
Perfect nonlinear functions are used to construct DES-like cryptosystems that are resistant to differential attacks. We present generalized DES-like cryptosystems where the XOR operation is replaced by a general group action. The new cryptosystems, when combined with G-perfect nonlinear functions (similar to classical perfect nonlinear functions with one XOR replaced by a general group action), allow us to construct systems resistant to modified differential attacks. The more general setting enables robust cryptosystems with parameters that would not be possible in the classical setting. We construct several examples of G-perfect nonlinear functions, both \({\mathbb{Z}}_2\) -valued and \({\mathbb{Z}}_2^a\) -valued. Our final constructions demonstrate G-perfect nonlinear planar permutations (from \({\mathbb{Z}}_2^a\) to itself), thus providing an alternative implementation to current uses of almost perfect nonlinear functions.
Similar content being viewed by others
References
Arasu K.T., Ding C., Helleseth T., Kumar P.V., Martinsen H. (2001). Almost difference sets and their sequences with optimal autocorrelations. IEEE Trans. Inform. Theory 47(7): 2934–2943
Beth T., Ding C.: On Almost Perfect Nonlinear Permutations, Advances in Cryptology - Eurocrypt ’93. Lecture Notes in Computer Science vol. 765, 65–76 Springer (1994).
Beth T., Jungnickel D., Lenz H. (1999). Design Theory, 2nd edn. Cambridge University Press, Cambridge
Biham E., Shamir A. (1991). Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1): 3–72
Budaghyan L., Carlet C., Felke P., Leander G. (2006). An infinite class of quadratic APN functions which are not equivalent to power mappings, IEEE Trans. Inform. Theory 52(2): 744–747
Carlet C., Charpin P., Zinoviev V. (1998). Codes, bent functions and permutations suitable for DES-like Cryptosystems. Des. Codes Cryptog. 15(2): 125–146
Carlet C., Ding C. (2004). Highly nonlinear mappings. J. Complexity 20(2): 205–244
Chabaud F., Vaudenay S.: Links between differential and linear cryptanalysis, Advances in Cryptology—Eurocrypt ’94. Lecture Notes in Computer Science Vol. 950, 356–365 Springer (1995).
Daemen J., Rijmen V.: The design of Rijndael: AES - The Advanced Encryption Standard. Springer-Verlag (2002).
Davis J.A. (1992). Construction of relative difference sets in p-groups. Discrete Math. 103: 7–15
Dillon J.F.: Elementary Hadamard difference sets, PhD thesis, University of Maryland (1974).
Ding C., Yuan J. (2006). A family of skew Hadamard difference sets. J. Comb. Theory A. 113(7): 1526–1535
Dobbertin H. (1999). Almost perfect nonlinear power functions on GF(2n): The Niho case. Inform. Comut. 151, 57–72
Dobbertin H.: Almost perfect nonlinear power functions on GF(2n): a new case for n divisible by 5. In: Jugnickel, D., Niederreiter, H. (eds.). Proceedings of finite fields and applications Fq5, Springer 113–121 (2000).
Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping, preprint, http://arxiv.org/abs/math.CO/0506420 (2005), accessed November 2005.
Feistel H. (1973). Cryptography and computer privacy. Sci. Am. 228(5): 15–23
FIPS 46–3, Data encryption standard, Federal Information Processing Standards Publication 46–3, U.S. Department of Commerce/N.I.S.T (1999).
FIPS 197, Advanced encryption standard, Federal Information Processing Standards Publication 197, U.S. Department of Commerce/N.I.S.T (2001).
Gold R. (1968). Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory 14, 154–156
Hou X.-D.: Affinity of permutations of \({\mathbb{F}}_2^n\) . In: Augot, D., Charpin, P., Kabatiansky, G. (eds.) Workshop on Coding and Cryptography 2003 pp. 273–280 (2003).
Lai X., Massey J.L.: A proposal for a new block encryption standard, Advances in Cryptology - Eurocrypt ’90. Lecture Notes in Computer Science 473, pp. 389–404 Springer (1991).
Meier W., Staffelbach O.: Nonlinearity criteria for cryptographic functions, Advances in Cryptology—Eurocrypt ’89. Lecture Notes in Computer Science, Vol 434, 549–562 Springer (1990).
Nyberg K.: Perfect nonlinear S-boxes, Advances in Cryptology—Eurocrypt ’91. Lecture Notes in Computer Sci. Springer, Vol. 547, pp. 378–386 (1992).
Nyberg K.: On the construction of highly nonlinear permutations, Advances in Cryptology—Eurocrypt ’92, Lecture Notes in Computer Science, Springer, Vol. 658, pp. 92–98 Springer (1993).
Nyberg K.: Differentially uniform mappings for cryptography, Advances in Cryptology—Eurocrypt ’93, Lecture Notes in Computer Science, Springer, Vol. 765, 55–64 (1994).
Paley R.E.A.C. (1933). On orthogonal matrices. J. Math. Phys. MIT. 12, 311–320
Poinsot L.: Non linéarité parfaite généralisée au sens des actions de groupes, contribution aux fondements de la solidité cryptographique (available at http://poinsot.univ-tln.fr/These.pdf), PhD thesis, University of South Toulon-Var (2005).
Poinsot L., Harari S.: Generalized Boolean bent functions, Progress in Cryptology—Indocrypt 2004. Lecture Notes in Computer Science, 3348, pp. 107–119 Springer (2004).
Poinsot L., Harari S. (2005). Group actions based perfect nonlinearity, GESTS Int. Tr. Comput. Sci. Eng. 12(1): 1–14
Pott A. (2004). Nonlinear functions in abelian groups and relative difference sets. Discrete Appl. Math. 138, 177–193
Rothaus O.S. (1976). On bent functions. J. Comb. Theory A 20, 300–305
Shorin V.V., Jelezniakov V.V., Gabidulin E.M.: Linear and differential cryptanalysis of Russian GOST. In: Augot, D., Carlet, C. (eds.) Workshop on Coding and Cryptography 467–476 (2001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by K.T. Arasu.
Rights and permissions
About this article
Cite this article
Davis, J.A., Poinsot, L. G-Perfect nonlinear functions. Des. Codes Cryptogr. 46, 83–96 (2008). https://doi.org/10.1007/s10623-007-9137-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-007-9137-7