Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

G-Perfect nonlinear functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Perfect nonlinear functions are used to construct DES-like cryptosystems that are resistant to differential attacks. We present generalized DES-like cryptosystems where the XOR operation is replaced by a general group action. The new cryptosystems, when combined with G-perfect nonlinear functions (similar to classical perfect nonlinear functions with one XOR replaced by a general group action), allow us to construct systems resistant to modified differential attacks. The more general setting enables robust cryptosystems with parameters that would not be possible in the classical setting. We construct several examples of G-perfect nonlinear functions, both \({\mathbb{Z}}_2\) -valued and \({\mathbb{Z}}_2^a\) -valued. Our final constructions demonstrate G-perfect nonlinear planar permutations (from \({\mathbb{Z}}_2^a\) to itself), thus providing an alternative implementation to current uses of almost perfect nonlinear functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arasu K.T., Ding C., Helleseth T., Kumar P.V., Martinsen H. (2001). Almost difference sets and their sequences with optimal autocorrelations. IEEE Trans. Inform. Theory 47(7): 2934–2943

    Article  MATH  MathSciNet  Google Scholar 

  • Beth T., Ding C.: On Almost Perfect Nonlinear Permutations, Advances in Cryptology - Eurocrypt ’93. Lecture Notes in Computer Science vol. 765, 65–76 Springer (1994).

  • Beth T., Jungnickel D., Lenz H. (1999). Design Theory, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Biham E., Shamir A. (1991). Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1): 3–72

    Article  MATH  MathSciNet  Google Scholar 

  • Budaghyan L., Carlet C., Felke P., Leander G. (2006). An infinite class of quadratic APN functions which are not equivalent to power mappings, IEEE Trans. Inform. Theory 52(2): 744–747

    Article  MathSciNet  Google Scholar 

  • Carlet C., Charpin P., Zinoviev V. (1998). Codes, bent functions and permutations suitable for DES-like Cryptosystems. Des. Codes Cryptog. 15(2): 125–146

    Article  MATH  MathSciNet  Google Scholar 

  • Carlet C., Ding C. (2004). Highly nonlinear mappings. J. Complexity 20(2): 205–244

    Article  MATH  MathSciNet  Google Scholar 

  • Chabaud F., Vaudenay S.: Links between differential and linear cryptanalysis, Advances in Cryptology—Eurocrypt ’94. Lecture Notes in Computer Science Vol. 950, 356–365 Springer (1995).

  • Daemen J., Rijmen V.: The design of Rijndael: AES - The Advanced Encryption Standard. Springer-Verlag (2002).

  • Davis J.A. (1992). Construction of relative difference sets in p-groups. Discrete Math. 103: 7–15

    Article  MATH  MathSciNet  Google Scholar 

  • Dillon J.F.: Elementary Hadamard difference sets, PhD thesis, University of Maryland (1974).

  • Ding C., Yuan J. (2006). A family of skew Hadamard difference sets. J. Comb. Theory A. 113(7): 1526–1535

    Article  MATH  MathSciNet  Google Scholar 

  • Dobbertin H. (1999). Almost perfect nonlinear power functions on GF(2n): The Niho case. Inform. Comut. 151, 57–72

    Article  MATH  MathSciNet  Google Scholar 

  • Dobbertin H.: Almost perfect nonlinear power functions on GF(2n): a new case for n divisible by 5. In: Jugnickel, D., Niederreiter, H. (eds.). Proceedings of finite fields and applications Fq5, Springer 113–121 (2000).

  • Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping, preprint, http://arxiv.org/abs/math.CO/0506420 (2005), accessed November 2005.

  • Feistel H. (1973). Cryptography and computer privacy. Sci. Am. 228(5): 15–23

    Article  Google Scholar 

  • FIPS 46–3, Data encryption standard, Federal Information Processing Standards Publication 46–3, U.S. Department of Commerce/N.I.S.T (1999).

  • FIPS 197, Advanced encryption standard, Federal Information Processing Standards Publication 197, U.S. Department of Commerce/N.I.S.T (2001).

  • Gold R. (1968). Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory 14, 154–156

    Article  MATH  Google Scholar 

  • Hou X.-D.: Affinity of permutations of \({\mathbb{F}}_2^n\) . In: Augot, D., Charpin, P., Kabatiansky, G. (eds.) Workshop on Coding and Cryptography 2003 pp. 273–280 (2003).

  • Lai X., Massey J.L.: A proposal for a new block encryption standard, Advances in Cryptology - Eurocrypt ’90. Lecture Notes in Computer Science 473, pp. 389–404 Springer (1991).

  • Meier W., Staffelbach O.: Nonlinearity criteria for cryptographic functions, Advances in Cryptology—Eurocrypt ’89. Lecture Notes in Computer Science, Vol 434, 549–562 Springer (1990).

  • Nyberg K.: Perfect nonlinear S-boxes, Advances in Cryptology—Eurocrypt ’91. Lecture Notes in Computer Sci. Springer, Vol. 547, pp. 378–386 (1992).

  • Nyberg K.: On the construction of highly nonlinear permutations, Advances in Cryptology—Eurocrypt ’92, Lecture Notes in Computer Science, Springer, Vol. 658, pp. 92–98 Springer (1993).

  • Nyberg K.: Differentially uniform mappings for cryptography, Advances in Cryptology—Eurocrypt ’93, Lecture Notes in Computer Science, Springer, Vol. 765, 55–64 (1994).

  • Paley R.E.A.C. (1933). On orthogonal matrices. J. Math. Phys. MIT. 12, 311–320

    MATH  Google Scholar 

  • Poinsot L.: Non linéarité parfaite généralisée au sens des actions de groupes, contribution aux fondements de la solidité cryptographique (available at http://poinsot.univ-tln.fr/These.pdf), PhD thesis, University of South Toulon-Var (2005).

  • Poinsot L., Harari S.: Generalized Boolean bent functions, Progress in Cryptology—Indocrypt 2004. Lecture Notes in Computer Science, 3348, pp. 107–119 Springer (2004).

  • Poinsot L., Harari S. (2005). Group actions based perfect nonlinearity, GESTS Int. Tr. Comput. Sci. Eng. 12(1): 1–14

    Google Scholar 

  • Pott A. (2004). Nonlinear functions in abelian groups and relative difference sets. Discrete Appl. Math. 138, 177–193

    Article  MATH  MathSciNet  Google Scholar 

  • Rothaus O.S. (1976). On bent functions. J. Comb. Theory A 20, 300–305

    Article  MATH  MathSciNet  Google Scholar 

  • Shorin V.V., Jelezniakov V.V., Gabidulin E.M.: Linear and differential cryptanalysis of Russian GOST. In: Augot, D., Carlet, C. (eds.) Workshop on Coding and Cryptography 467–476 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Davis.

Additional information

Communicated by K.T. Arasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.A., Poinsot, L. G-Perfect nonlinear functions. Des. Codes Cryptogr. 46, 83–96 (2008). https://doi.org/10.1007/s10623-007-9137-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9137-7

Keywords

AMS Classifications