Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The geometry of some two-character sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A projective (n, d, w 1, w 2) q set (or a two-character set for short) is a set \({\mathcal{S}}\) of n points of PG(d − 1, q) with the properties that the set generates PG(d − 1, q) and that every hyperplane meets the set in either nw 1 or nw 2 points. Here geometric constructions of some two-character sets are given. The constructions mainly involve commuting polarities, symplectic polarities and normal line-spreads of projective spaces. Some information about the automorphism groups of such sets is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguglia A., Cossidente A., Ebert G.L. (2003). Complete spans on Hermitian varieties. Des. Codes Cryptogr. 29, 7–15

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruck R.H.: Construction problems in finite projective spaces. In: Combinatorial Mathematics and its Application. pp. 426–514. Chapel Hill (1969).

  3. Calderbank R., Kantor W.M. (1986). The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122

    Article  MATH  MathSciNet  Google Scholar 

  4. Cossidente A., King O.H. (2004). On some maximal subgroups of unitary groups. Commun. Algebra 32, 989–995

    Article  MATH  MathSciNet  Google Scholar 

  5. Cossidente A., Marino G. (2007). The Veronese embedding and two-character sets. Des. Codes Cryptogr. 42, 103–107

    Article  MathSciNet  Google Scholar 

  6. Cossidente A., Van Maldeghem H. (2007). The exceptional group G 2(q), q even, and two-character sets. J. Combin. Theory Ser. A 114, 964–969

    Article  MATH  MathSciNet  Google Scholar 

  7. Delsarte P.: Two-weights linear codes and strongly regular graphs. Report R160, MBLE Res. Lab., Brussels (1971).

  8. Delsarte P. (1972). Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64

    Article  MATH  MathSciNet  Google Scholar 

  9. De Wispelaere A., Van Maldeghem H. (2005). Codes from generalized hexagons. Des. Codes Cryptogr. 37, 435–448

    Article  MathSciNet  Google Scholar 

  10. De Wispelaere A., Van Maldeghem H.: Some new two-character sets in PG(5, q 2) and a distance-2 ovoid in the generalized hexagon H(4) (to appear).

  11. Govaerts P., Penttila T. (2005). Cameron-Liebler line classes in PG(3,4). Bull. Belg. Math. Soc. Simon Stevin 12(5): 793–804

    MathSciNet  Google Scholar 

  12. Hirschfeld J.W.P. (1998). Projective Geometries over Finite Fields, 2nd ed. Oxford University Press, Oxford

    MATH  Google Scholar 

  13. Hirschfeld J.W.P., Thas J.A. (1998). General Galois Geometries. Oxford University Press, Oxford

    Google Scholar 

  14. Kohnert A.: Constructing two-weight codes with prescribed groups of automorphisms (preprint).

  15. Lunardon G. (1999). Normal spreads. Geom. Dedicata 75(3): 245–261

    Article  MATH  MathSciNet  Google Scholar 

  16. Lunardon G. (2006). Blocking sets and semifields. J. Combin. Theory Ser. A 113(6): 1172–1188

    Article  MATH  MathSciNet  Google Scholar 

  17. Pasini A., Van Maldeghem H.: Some constructions and embeddings of the Tilde Geometry. Note Mat. 21, 1–33 (2002/2003).

    Google Scholar 

  18. Segre B. (1964). Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76

    Article  MATH  MathSciNet  Google Scholar 

  19. Segre B. (1965). Forme e geometrie hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201

    Article  MATH  MathSciNet  Google Scholar 

  20. Svéd M., Baer subspaces in the n-dimensional projective space, Combinatorial Mathematics X (Adelaide, 1982). Lecture Notes in Mathematics, vol. 1036, pp. 375–391. Springer, Berlin (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Additional information

Communicated by S. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A., Durante, N., Marino, G. et al. The geometry of some two-character sets. Des. Codes Cryptogr. 46, 231–241 (2008). https://doi.org/10.1007/s10623-007-9155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9155-5

Keywords

AMS Classifications