Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

More efficient DDH pseudorandom generators

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we first show a DDH Lemma, which states that a multi-variable version of the decisional Diffie–Hellman problem is hard under the standard DDH assumption, where the group size is not necessarily known. Our proof, based on a self-reducibility technique, has a small reduction complexity. Using DDH Lemma, we extend the FSS pseudorandom generator of Farashahi et al. to a new one. The new generator is almost twice faster than FSS while still provably secure under the DDH assumption. Using the similar technique for the RSA modulus, we improve the Goldreich–Rosen generator. The new generator is provably secure under the factoring assumption and DDH assumption over \({\mathbb{Z}_N^*}\). Evidently, to achieve the same security level, different generators may have different security parameters (e.g., distinct length of modulus). We compare our generators with other generators under the same security level. For simplicity, we make comparisons without any pre-computation. As a result, our first generator is the most efficient among all generators that are provably secure under standard assumptions. It has the similar efficiency as Gennaro generator, where the latter is proven secure under a non-standard assumption. Our second generator is more efficient than Goldreich–Rosen generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexi W., Chor B., Goldreich O., Schnorr C.: RSA and Rabin functions: certain parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellare M., Boldyreva A., Micali S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Advances in Cryptology-EUROCRYPT’00. LNCS, vol. 1807, pp. 259–274 (2000).

  3. Bellare M., Boldyreva A., Kurosawa K., Staddon J.: Multi-recipient encryption schemes: efficient constructions and their security. IEEE Trans. Inform. Theory 53(11), 3927–3943 (2007)

    Article  MathSciNet  Google Scholar 

  4. Berbain C., Gilbert H., Patarin J.: QUAD: a practical stream cipher with provable security. In: Advances in Cryptology-EUROCRYPT 2006. LNCS, vol. 4004, pp. 109–128 (2006).

  5. Blum M., Micali S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blum L., Blum M., Shub M.: A Simple unpredictable pseudorandom number generator. SIAM J. Comput. 15(2), 364–383 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boneh D.: The decision Diffie–Hellman problem. In: The Third Algorithmic Number Theory Symposium. LNCS, vol. 1423, pp. 48–63 (1998).

  8. Boneh D., Halevi S., Howgrave-Graham N.A.: The modular inversion hidden number problem. In: Advances in Cryptology-ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51 (2001).

  9. Chevassut O., Fouque P.A., Gaudry P., Pointcheval D.: Key derivation and randomness extraction. Cryptology ePrint archive. Report 2005/061 (2005). http://eprint.iacr.org/2005/061.pdf.

  10. Diffie W., Hellman M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farashahi R.R., Schoenmakers B., Sidorenko A.: Efficient pseudo-random generators based on the DDH assumption. In: PKC 2007. LNCS, vol. 4450, pp. 426–441 (2007).

  12. Fischlin R., Schnorr C.: Stronger security proofs for RSA and Rabin bits. J. Cryptol. 13(2), 221–244 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gennaro R.: An improved pseudo-random generator based on the discrete logarithm problem. J. Cryptol. 18(2), 91–110 (2006)

    Article  MathSciNet  Google Scholar 

  14. Goldreich O., Goldwasser S., Micali S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  15. Goldreich O., Rosen V.: On the security of modular exponentiation with application to the construction of pseudorandom generators. J. Cryptol. 16(2), 71–93 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldreich O., Wigderson A.: Tiny family of functions with random properties: a quality-size tradeoff forhashing. In: ACM STOC’94. pp. 574–584 (1994).

  17. Goldwasser S., Micali S.: probabilistic encryptions. J. Comput. Syst. Sci. 28(2), 270–299 (1984). Priliminary version appears in STOC’82.

  18. Gonzalez Vasco M.I., Naslund M., Shparlinski I.E.: New results on the hardness of Diffie-Hellman bits. In: PKC 2004. LNCS, vol. 2947, pp. 159–172 (2004).

  19. Håstad J., Impagliazzo R., Levin L., Luby M.: A pseudo-random generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Impagliazzo R., Naor M.: Efficient cryptographic schemes provably as secure as subset sum. J. Cryptol. 9(4), 199–216 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiang S.: Efficient primitives from exponentiation in Zp. In: Information Security and privacy: 11th Australasian Conference—ACISP 2006. LNCS, vol. 4058, pp. 259–270 (2006).

  22. Jiang S., Gong G.: Security of a server-assisted group password-authenticated key exchange protocol. Technical Report CACR 2005-17 (2005). http://www.cacr.math.uwaterloo.ca.

  23. Juels A., Jakobsson M., Shriver E., Hillyer B.K.: How to turn loaded dice into fair coins. IEEE Trans. Inform Theory 46(3), 911–921 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lenstra A.K., Verheul E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4), 255–293 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Lim C., Lee P.: More flexible exponentiation with precomputation. In: Advances in Cryptology-CRYPTO 1994. LNCS, vol. 839, pp. 95–107 (1994).

  26. Long D.L., Wigderson A.: How discreet is the discrete log. In: ACM STOC. pp. 413–420 (1983).

  27. Luby M., Rackoff C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Naor M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)

    Article  MATH  Google Scholar 

  29. Patel S., Sundaram G.S.: An efficient discrete log pseudo random generator. In: Advances in Cryptology-CRYPTO 1998. LNCS, vol. 1462, pp. 304–317 (1998).

  30. Peralta R.: Simultaneous security of bits in the discrete Log. In: Advances in Cryptology-EUROCRYPT 1985. LNCS, vol. 219, pp. 62–72 (1986).

  31. Shaltiel R.: Recent developments in explicit constructions of extractors. In: Bull. Eur. Assoc. Theory Comput. Sci., pp. 67–95 (2002).

  32. Shoup V.: Lower bounds for discrete logarithms and related problems. In: Advances in Cryptology-EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266 (1997).

  33. Shoup V.: On formal models for secure key exchange. http://philby.ucsd.edu/cryptolib/1999.html.

  34. Sidorenko A., Schoenmakers B.: Concrete security of the blum-blum-shub pseudorandom generator. In: Cryptography and Coding 2005. LNCS, vol. 3796, pp. 355–375 (2005).

  35. Steinfeld R., Pieprzyk J., Wang H.: On the provable security of an efficient RSA-based pseudorandom generator. In: Advances in Cryptology-ASIACRYPT 2006. LNCS, vol. 4284, pp. 194–209 (2006).

  36. Wullschleger J.: Oblivious transfer amplification, PhD Thesis, ETH, 2006. http://arxiv.org/abs/cs/0608076.

  37. Yao A.: Theory and applications of trapdoor functions. In: IEEE FOCS. pp. 80–91 (1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoquan Jiang.

Additional information

Communicated by Carlos Cid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H., Jiang, S. & Qin, Z. More efficient DDH pseudorandom generators. Des. Codes Cryptogr. 55, 45–64 (2010). https://doi.org/10.1007/s10623-009-9329-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9329-4

Keywords

Mathematics Subject Classification (2000)