Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On linear sets on a projective line

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Linear sets generalise the concept of subgeometries in a projective space. They have many applications in finite geometry. In this paper we address two problems for linear sets: the equivalence problem and the intersection problem. We consider linear sets as quotient geometries and determine the exact conditions for two linear sets to be equivalent. This is then used to determine in which cases all linear sets of rank 3 of the same size on a projective line are (projectively) equivalent. In (Donati and Durante, Des Codes Cryptogr, 46:261–267), the intersection problem for subgeometries of PG(n, q) is solved. The intersection of linear sets is much more difficult. We determine the intersection of a subline PG(1, q) with a linear set in PG(1, q h) and investigate the existence of irregular sublines, contained in a linear set. We also derive an upper bound, which is sharp for odd q, on the size of the intersection of two different linear sets of rank 3 in PG(1, q h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker R.D., Brown J.M.N., Ebert G.L., Fisher J.C.: bundles. Bull. Belg. Math. Soc. 3, 329–336 (1994)

    MathSciNet  Google Scholar 

  2. Ball S., Blokhuis A., Mazzocca F.: Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17, 31–41 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blokhuis A., Lavrauw M.: Scattered spaces with respect to a spread in PG(n,q). Geom. Dedicata 81(1–3), 231–243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonoli G., Polverino O.: \({\mathbb {F}}\)-linear blocking sets in PG(2, q 4). Innov. Incidence Geom. 2, 35–56 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Donati G., Durante N.: On the intersection of two subgeometries of PG(n, q). Des. Codes Cryptogr. 46, 261–267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fancsali Sz.L., Sziklai P.: About maximal partial 2-spreads in PG(3m − 1, q). Innov. Incidence Geom. 4, 89–102 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Fancsali Sz.L., Sziklai P.: Description of the clubs. Annales Univ. Sci. Sect. Mat. (to appear).

  8. Ferret S., Storme L.: Results on maximal partial spreads in PG(3, p 3) and on related minihypers. Des. Codes Cryptogr. 29, 105–122 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Glynn D.G.: Finite projective planes and related combinatorial systems. PhD thesis, Adelaide University (1978).

  10. Harrach N., Metsch K.: Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points. Des. Codes Cryptogr. (submitted).

  11. Harrach N., Metsch K., Szőnyi T., Weiner Zs.: Small point sets of PG(n, p 3h) intersecting each line in 1 mod p h points. J. Geom. (submitted).

  12. Hirschfeld J.W.P.: Projective geometries over finite fields, 2nd edition. Oxford University Press, New York, 1998. xiv + 555 pp.

  13. Lavrauw M., Polverino O.: Finite semifields. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometries. Nova Academic Publishers (to appear).

  14. Lavrauw M., Storme L., Van de Voorde G.: A proof for the linearity conjecture for k-blocking sets in PG(n, p 3), p prime. J. Combin. Theory Ser. A (submitted).

  15. Lunardon G.: Normal spreads. Geom. Dedicata 75, 245–261 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lunardon G., Polverino O.: Translation ovoids of orthogonal polar spaces. Forum Math. 16, 663–669 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Polito P., Polverino O.: On small blocking sets. Combinatorica 18(1), 133–137 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Polverino O.: Linear sets in finite projective spaces. Discrete Math. (2009). doi:10.1016/j.disc.2009.04.007.

  19. Sziklai P.: On small blocking sets and their linearity. J. Combin. Theory Ser. A 115(7), 1167–1182 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Van de Voorde.

Additional information

Communicated by Leo Storme.

Dedicated to the memory of A. Gács (1969–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrauw, M., Van de Voorde, G. On linear sets on a projective line. Des. Codes Cryptogr. 56, 89–104 (2010). https://doi.org/10.1007/s10623-010-9393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9393-9

Keywords

Mathematics Subject Classification (2000)