Abstract
Optimal normal bases are special cases of the so-called Gauss periods (Disquisitiones Arithmeticae, Articles 343–366); in particular, optimal normal bases are Gauss periods of type (n, 1) for any characteristic and of type (n, 2) for characteristic 2. We present the multiplication tables and complexities of Gauss periods of type (n, t) for all n and t = 3, 4, 5 over any finite field and give a slightly weaker result for Gauss periods of type (n, 6). In addition, we give some general results on the so-called cyclotomic numbers, which are intimately related to the structure of Gauss periods. We also present the general form of a normal basis obtained by the trace of any normal basis in a finite extension field. Then, as an application of the trace construction, we give upper bounds on the complexity of the trace of a Gauss period of type (n, 3).
Similar content being viewed by others
References
Ahmadi O., Shparlinski I., Voloch J.F.: On multiplicative order of Gauss periods. Int. J. Number Theory. 5(4), 877–882 (2010)
Ash D.W., Blake I.F., Vanstone S.A.: Low complexity normal bases. Discrete Appl. Math. 25, 191–210 (1989)
Christopoulou M., Garefalakis T., Panario D., Thomson D.: The trace of an optimal normal element and low complexity normal bases. Des. Codes Cryptogr. 49, 199–215 (2008)
Dahab R., Hankerson D., Hu F., Long M., López J., Menezes A.: Software multiplication using Gaussian normal bases. IEEE Trans. Comput. 55, 974–984 (2006)
Gao S., Lenstra H.W.: Optimal normal bases. Des. Codes Cryptogr. 2, 315–323 (1992)
Gao S., von zur Gathen J., Panario D.: Gauss periods: orders and cryptographical applications. Math. Comput. 67, 343–352 (1998)
Gao S., von zur Gathen J., Panario D., Shoup V.: Algorithms for exponentiation in finite fields. J. Symbol. Comput. 29, 879–889 (2000)
Gauss C.F.: Disquisitiones Arithmeticae, English edition. Springer-Verlag, New York (1986)
Hasan M.A., Wang M.Z., Bhargava V.K.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Comput. 42, 1278–1280 (1993)
Jungnickel D.: Finite Fields: Structure and Arithmetic. Wissenschaftsverlag, Mannheim (1993).
Massey J.L., Omura J.K.: Computation method and apparatus for finite field arithmetic. U.S Patent no.:4587627, Issued: 6 (May 1986).
Masuda A., Moura L., Panario D., Thomson D.: Low complexity normal elements over finite fields of characteristic two. IEEE Trans. Comput. 57, 990–1001 (2008).
Mullin R.C., Onyszchuk I.M., Vanstone S.A., Wilson R.M.: Optimal normal bases in GF(p n). Discrete Appl. Math. 22, 149–161 (1989)
Reyhani-Masoleh A., Hasan M.A.: Efficient multiplication beyond optimal normal bases. IEEE Trans. Comput. 52, 428–439 (2003)
Reyhani-Masoleh A., Hasan M.A.: Low complexity word-level sequential normal-basis multipliers. IEEE Trans. Comput. 54, 98–110 (2005)
Silva D., Kschischang F.R.: Fast encoding and decoding of Gabidulin codes. In: Proceedings of the IEEE International Symposium of Information Theory, Seoul, Korea, 2858–2862 (2009).
Sunar B., Koç C.K.: An efficient optimal normal basis type II multiplier. IEEE Trans. Comput. 50, 83–87 (2001)
von zur Gathen J., Nöcker M.: Fast arithmetic with general Gauss periods. Theor. Comput. Sci. 315, 419–452 (2004)
von zur Gathen J., Pappalardi F.: Density estimates related to Gauss periods. Prog. Comput. Sci. Appl. Log. 20, 33–41 (2001)
von zur Gathen J., Shparlinski I.: Orders of Gauss periods in finite fields. Appl. Algebra Eng. Commun. Comput. 9, 15–24 (1997)
Wan Z., Zhou K.: On the complexity of the dual basis of a type I optimal normal basis. Finite Fields Appl. 13, 411–417 (2007)
Wassermann A.: Konstruktion von Normalbasen. Bayreuther Mathematische Scriften 31, 155–164 (1990)
Young B., Panario D.: Low complexity normal bases in \({{{\mathbb F}_{2^n}}}\) . Finite Fields Appl. 10, 53–64 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Hachenberger.
Rights and permissions
About this article
Cite this article
Christopoulou, M., Garefalakis, T., Panario, D. et al. Gauss periods as constructions of low complexity normal bases. Des. Codes Cryptogr. 62, 43–62 (2012). https://doi.org/10.1007/s10623-011-9490-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9490-4