Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gauss periods as constructions of low complexity normal bases

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Optimal normal bases are special cases of the so-called Gauss periods (Disquisitiones Arithmeticae, Articles 343–366); in particular, optimal normal bases are Gauss periods of type (n, 1) for any characteristic and of type (n, 2) for characteristic 2. We present the multiplication tables and complexities of Gauss periods of type (n, t) for all n and t = 3, 4, 5 over any finite field and give a slightly weaker result for Gauss periods of type (n, 6). In addition, we give some general results on the so-called cyclotomic numbers, which are intimately related to the structure of Gauss periods. We also present the general form of a normal basis obtained by the trace of any normal basis in a finite extension field. Then, as an application of the trace construction, we give upper bounds on the complexity of the trace of a Gauss period of type (n, 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi O., Shparlinski I., Voloch J.F.: On multiplicative order of Gauss periods. Int. J. Number Theory. 5(4), 877–882 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ash D.W., Blake I.F., Vanstone S.A.: Low complexity normal bases. Discrete Appl. Math. 25, 191–210 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Christopoulou M., Garefalakis T., Panario D., Thomson D.: The trace of an optimal normal element and low complexity normal bases. Des. Codes Cryptogr. 49, 199–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dahab R., Hankerson D., Hu F., Long M., López J., Menezes A.: Software multiplication using Gaussian normal bases. IEEE Trans. Comput. 55, 974–984 (2006)

    Article  Google Scholar 

  5. Gao S., Lenstra H.W.: Optimal normal bases. Des. Codes Cryptogr. 2, 315–323 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gao S., von zur Gathen J., Panario D.: Gauss periods: orders and cryptographical applications. Math. Comput. 67, 343–352 (1998)

    Article  MATH  Google Scholar 

  7. Gao S., von zur Gathen J., Panario D., Shoup V.: Algorithms for exponentiation in finite fields. J. Symbol. Comput. 29, 879–889 (2000)

    Article  MATH  Google Scholar 

  8. Gauss C.F.: Disquisitiones Arithmeticae, English edition. Springer-Verlag, New York (1986)

    Google Scholar 

  9. Hasan M.A., Wang M.Z., Bhargava V.K.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Comput. 42, 1278–1280 (1993)

    Article  Google Scholar 

  10. Jungnickel D.: Finite Fields: Structure and Arithmetic. Wissenschaftsverlag, Mannheim (1993).

  11. Massey J.L., Omura J.K.: Computation method and apparatus for finite field arithmetic. U.S Patent no.:4587627, Issued: 6 (May 1986).

  12. Masuda A., Moura L., Panario D., Thomson D.: Low complexity normal elements over finite fields of characteristic two. IEEE Trans. Comput. 57, 990–1001 (2008).

    Google Scholar 

  13. Mullin R.C., Onyszchuk I.M., Vanstone S.A., Wilson R.M.: Optimal normal bases in GF(p n). Discrete Appl. Math. 22, 149–161 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Reyhani-Masoleh A., Hasan M.A.: Efficient multiplication beyond optimal normal bases. IEEE Trans. Comput. 52, 428–439 (2003)

    Article  Google Scholar 

  15. Reyhani-Masoleh A., Hasan M.A.: Low complexity word-level sequential normal-basis multipliers. IEEE Trans. Comput. 54, 98–110 (2005)

    Article  Google Scholar 

  16. Silva D., Kschischang F.R.: Fast encoding and decoding of Gabidulin codes. In: Proceedings of the IEEE International Symposium of Information Theory, Seoul, Korea, 2858–2862 (2009).

  17. Sunar B., Koç C.K.: An efficient optimal normal basis type II multiplier. IEEE Trans. Comput. 50, 83–87 (2001)

    Article  MathSciNet  Google Scholar 

  18. von zur Gathen J., Nöcker M.: Fast arithmetic with general Gauss periods. Theor. Comput. Sci. 315, 419–452 (2004)

    Article  MATH  Google Scholar 

  19. von zur Gathen J., Pappalardi F.: Density estimates related to Gauss periods. Prog. Comput. Sci. Appl. Log. 20, 33–41 (2001)

    Google Scholar 

  20. von zur Gathen J., Shparlinski I.: Orders of Gauss periods in finite fields. Appl. Algebra Eng. Commun. Comput. 9, 15–24 (1997)

    Article  Google Scholar 

  21. Wan Z., Zhou K.: On the complexity of the dual basis of a type I optimal normal basis. Finite Fields Appl. 13, 411–417 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wassermann A.: Konstruktion von Normalbasen. Bayreuther Mathematische Scriften 31, 155–164 (1990)

    MATH  MathSciNet  Google Scholar 

  23. Young B., Panario D.: Low complexity normal bases in \({{{\mathbb F}_{2^n}}}\) . Finite Fields Appl. 10, 53–64 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Thomson.

Additional information

Communicated by D. Hachenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopoulou, M., Garefalakis, T., Panario, D. et al. Gauss periods as constructions of low complexity normal bases. Des. Codes Cryptogr. 62, 43–62 (2012). https://doi.org/10.1007/s10623-011-9490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9490-4

Keywords

Mathematics Subject Classification (2000)