Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A generalized extension theorem for linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We prove that an [n, k, d] q code \({\mathcal{C}}\) with gcd(d, q) = 1 is extendable if \({\sum_{i \not\equiv 0,d}A_i < (q-1)q^{k-2}}\), where A i denotes the number of codewords of \({\mathcal{C}}\) with weight i. This is a generalization of extension theorems for linear codes by Hill and Lizak (Proceedings of the IEEE International Symposium on Information Theory, Whistler, Canada, 1995) and by Landjev and Rousseva (Probl. Inform. Transm. 42: 319–329, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batten L.M.: Combinatorics of Finite Geometries, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Bierbrauer J.: Introduction to Coding Theory. Chapman and Hall, London (2005)

    MATH  Google Scholar 

  3. Hill R.: Optimal linear codes. In: Mitchell, C. (eds) Cryptography and Coding II, pp. 75–104. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Hill R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151–157 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hill R., Kolev E. et al.: A survey of recent results on optimal linear codes. In: Holroyd, F.C. (eds) Combinatorial Designs and their Applications. Research Notes in Mathamatics, vol. 403., pp. 127–152. Chapman & Hall, London (1999)

    Google Scholar 

  6. Hill R., Lizak P.: Extensions of linear codes. In: Proceedings of the IEEE International Symposium on Information Theory, p. 345. Whistler, Canada (1995).

  7. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  8. Kanazawa R., Maruta T.: On optimal linear codes over F8. Electronic J. Combin. 18, 34 (2011)

    MathSciNet  Google Scholar 

  9. Landjev I., Rousseva A.: An extension theorem for arcs and linear codes. Probl. Inform. Transm. 42, 319–329 (2006)

    Article  Google Scholar 

  10. Maruta T.: On the extendability of linear codes. Finite Fields Appl. 7, 350–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Maruta T.: A new extension theorem for linear codes. Finite Fields Appl. 10, 674–685 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maruta T.: Extendability of ternary linear codes. Des. Codes Cryptogr. 35, 175–190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maruta T., Landjev I.N., Rousseva A.: On the minimum size of some minihypers and related linear codes. Des. Codes Cryptogr. 34, 5–15 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ward H.N.: Divisibility of codes meeting the Griesmer bound. J. Combin. Theory A 83(1), 79–93 (1998)

    Article  MATH  Google Scholar 

  15. Yoshida Y., Maruta T.: An extension theorem for [n, k, d] q codes with gcd(d, q) = 2. Australas. J. Combin. 48, 117–131 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Maruta.

Additional information

Communicated by R. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruta, T., Yoshida, Y. A generalized extension theorem for linear codes. Des. Codes Cryptogr. 62, 121–130 (2012). https://doi.org/10.1007/s10623-011-9497-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9497-x

Keywords

Mathematics Subject Classification (2000)