Abstract
For an odd prime p ≠ 7, let q be a power of p such that \({q^3\equiv1 \pmod 7}\) . It is known that the desarguesian projective plane PG(2, q) of order q has a unique conjugacy class of projectivity groups isomorphic to PSL(2, 7). For such a projective group Γ, we investigate the geometric properties of the (unique) Γ-orbit Ω of size 42 such that the 1-point stabilizer of Γ in Ω is a cyclic group of order 4. We present a computational approach to prove that Ω is a 42-arc provided that q ≥ 53 and q ≠ 373, 116, 56, 36. We discuss the case q = 53 in more detail showing the completeness of Ω for q = 53.
Similar content being viewed by others
References
Abatangelo V.: Doubly transitive (n + 2)-arcs in projective planes of even order n. J. Combin. Theory Ser. 42, 1–8 (1986)
Behr H., Mennicke J.: A presentation of the groups PSL(2, p). Canad. J. Math. 20, 1432–1438 (1968)
Cannon J.J., Bosma W. (eds.): Handbook of Magma Functions, Edition 2.13 (2006).
Chao J.M., Kaneta H.: A complete 24-arc in PG(2, 29) with the autom orphism group PSL(2, 7). Rend. Mat. Appl. 16, 537–544 (1996)
Cossidente A., Korchmáros G.: The Hermitian function field arising from a cyclic arc in a Galois plane. Geometry, Combinatorial Designs and Related Structures. London Math. Soc. Lecture Note Ser. 245, Cambridge University Press, Cambridge, 63–68 (1997).
Cossidente A., Korchmáros G.: The algebraic envelope associated to a complete arc. Rend. Circ. Mat. Palermo Suppl. 51, 9–24 (1998)
de Resmini M., Ghinelli D., Jungnickel D.: Arcs and ovals from abelian groups. Des. Codes Cryptogr. 26(1–3), 213–228 (2002)
Giulietti M.: Envelopes of k-arcs in projective planes over finite fields and Gröbner bases. Rend. Circ. Mat. Palermo 48, 191–200 (1999)
Giulietti M.: Algebraic curves over finite fields and MAGMA. Ital. J. Pure Appl. Math. 8, 19–32 (2000)
Gordon C., Killgrove R.: Representative arcs in field planes of prime order. In: Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1989), vol. 71, pp. 73–85 (1990).
Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998)
Hirschfeld J.W.P., Korchmáros G.: On the embedding of an arc into a conic in a finite plane. Finite Fields Appl. 2, 274–292 (1996)
Hirschfeld J.W.P., Korchmáros G.: On the number of rational points on an algebraic curve over a finite field. Bull. Belg. Math. Soc. Simon Stevin 5, 313–340 (1998)
Hirschfeld J.W.P., Korchmáros G.: Arcs and curves over a finite field. Finite Fields Appl. 5, 393–408 (1999)
Hirschfeld J.W.P., Korchmáros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008)
Kaneta H., Marcugini S., Pambianco F.: On arcs and curves with many automorphisms. Mediterr. J. Math. 2, 71–102 (2005)
Korchmáros G.: Collineation groups transitive on the points of an oval [(q + 2)-arc] of S 2,q for q even. Atti Sem. Mat. Fis. Univ. Modena 27, 89–105 (1978)
Korchmáros G., Pace N.: Infinite family of large complete arcs in PG(2, q n), with q odd and n > 1 odd. Des. Codes Cryptogr. 55, 285–296 (2010)
Korchmáros G., Sonnino A.: On arcs sharing the maximum number of points with ovals in cyclic affine planes of odd order. J. Combin. Des. 18, 25–47 (2010)
Pellegrino G.: Properties and applications of the axial collineation group on a conic of an odd-order Galois plane. Rend. Mat. Appl. 11, 591–616 (1991)
Segre B.: Ovals in a finite projective plane. Canad. J. Math. 7, 414–416 (1955)
Segre B.: Introduction to Galois geometries, edited by J.W.P. Hirschfeld. Atti Accad. Naz. Lincei Mem. 8, 133–236 (1967)
Ueberberg J.: Projective planes and dihedral groups. Discrete Math. 174, 337–345 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published together in Designs, Codes and Cryptography on the special topic: “Geometry, Combinatorial Designs & Cryptology”.
Rights and permissions
About this article
Cite this article
Indaco, L., Korchmáros, G. 42-arcs in PG(2, q) left invariant by PSL(2, 7). Des. Codes Cryptogr. 64, 33–46 (2012). https://doi.org/10.1007/s10623-011-9532-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9532-y