Abstract
We show for binary Armstrong codes Arm(2, k, n) that asymptotically n/k ≤ 1.224, while such a code is shown to exist whenever n/k ≤ 1.12. We also construct an Arm(2, n − 2, n) and Arm(2, n − 3, n) for all admissible n.
Similar content being viewed by others
References
Katona G.O.H., Sali A., Schewe K.-D.: Codes that attain minimum distance in all possible directions. Cent. Eur. J. Math. 6, 1–11 (2008)
Keszler A.: Adatbázisok Extremális Kombinatorikai Problémái, Diploma thesis Budapest University of Technology and Economics (2008).
Levenshtein V.I.: Universal bounds for codes and designs. In: Pless, V.S., Huffman, W.C. (eds) Handbook of Coding Theory, pp. 499–648. Elsevier, Amsterdam (1998)
McEliece R.J., Rodemich E.R., Rumsey H.C., Welch L.R.: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inf. Theory 23, 157–166 (1977)
Östergård P.R.J., Pottonen O.: The perfect binary one-error-correcting codes of length 15: Part I—Classification. arXiv:0806.2513, Dec (2009).
Sali A., Schewe K.-D.: Keys and Armstrong databases in trees with restructuring. Acta Cybernetica 18, 529–556 (2008)
Sali A., Székely L.: On the existence of Armstrong instances with bounded domains. Lect. Notes Comp. Sci. 4932, 151–157 (2008)
Sali A.: Coding theory motivated by relational databases. Lect. Notes Comp. Sci. 6834, 96–113 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. A. Zinoviev.
Rights and permissions
About this article
Cite this article
Blokhuis, A., Brouwer, A.E. & Sali, A. Note on the size of binary Armstrong codes. Des. Codes Cryptogr. 71, 1–4 (2014). https://doi.org/10.1007/s10623-012-9711-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9711-5