Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Note on the size of binary Armstrong codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show for binary Armstrong codes Arm(2, k, n) that asymptotically n/k ≤ 1.224, while such a code is shown to exist whenever n/k ≤ 1.12. We also construct an Arm(2, n − 2, n) and Arm(2, n − 3, n) for all admissible n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katona G.O.H., Sali A., Schewe K.-D.: Codes that attain minimum distance in all possible directions. Cent. Eur. J. Math. 6, 1–11 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Keszler A.: Adatbázisok Extremális Kombinatorikai Problémái, Diploma thesis Budapest University of Technology and Economics (2008).

  3. Levenshtein V.I.: Universal bounds for codes and designs. In: Pless, V.S., Huffman, W.C. (eds) Handbook of Coding Theory, pp. 499–648. Elsevier, Amsterdam (1998)

    Google Scholar 

  4. McEliece R.J., Rodemich E.R., Rumsey H.C., Welch L.R.: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inf. Theory 23, 157–166 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Östergård P.R.J., Pottonen O.: The perfect binary one-error-correcting codes of length 15: Part I—Classification. arXiv:0806.2513, Dec (2009).

  6. Sali A., Schewe K.-D.: Keys and Armstrong databases in trees with restructuring. Acta Cybernetica 18, 529–556 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Sali A., Székely L.: On the existence of Armstrong instances with bounded domains. Lect. Notes Comp. Sci. 4932, 151–157 (2008)

    Article  Google Scholar 

  8. Sali A.: Coding theory motivated by relational databases. Lect. Notes Comp. Sci. 6834, 96–113 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Sali.

Additional information

Communicated by V. A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blokhuis, A., Brouwer, A.E. & Sali, A. Note on the size of binary Armstrong codes. Des. Codes Cryptogr. 71, 1–4 (2014). https://doi.org/10.1007/s10623-012-9711-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9711-5

Keywords

Mathematics Subject Classification