Abstract
In this paper, we construct two classes of permutation polynomials over \({\mathbb {F}}_{q^2}\) with odd characteristic closely related to rational Rédei functions. Two distinct characterizations of their compositional inverses are also obtained. These permutation polynomials can be generated recursively. As a consequence, we can generate permutation polynomials with an arbitrary number of terms in a very simple way. Moreover, several classes of permutation binomials and trinomials are given. With the help of a computer, we find that the number of permutation polynomials of these types is quite big.
Similar content being viewed by others
References
Akbary A., Ghioca D., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011).
Bartoli D., Masuda A.M., Quoos L.: Permutation polynomials over \({\mathbb{F}}_{q^2}\) from rational functions. arXiv:1802.05260 (2018).
Carlet C., Ding C., Yuan J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).
Ding C., Helleseth T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory 59(9), 5898–5904 (2013).
Ding C., Yuan J.: A family of skew Hadamard difference sets. J. Comb. Theory A 113(7), 1526–1535 (2006).
Ding C., Yin J.: Signal sets from functions with optimum nonlinearity. IEEE Trans. Commun. 55(5), 936–940 (2007).
Ding C., Qu L., Wang Q., Yuan J., Yuan P.: Permutation trinomials over finite fields with even characteristic. SIAM J. Discret. Math. 29(1), 79–92 (2015).
Gupta R., Sharma R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016).
Hou X.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).
Hou X., Mullen G.L., Sellers J.A., Yucas J.L.: Reversed Dickson polynomials over finite fields. Finite Fields Appl. 15(6), 748–773 (2009).
Laigle-Chapuy Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13(1), 58–70 (2007).
Li N., Helleseth T.: New permutation trinomials from Niho exponents over finite fields with even characteristic. arXiv:1606.03768 (2016).
Li N., Helleseth T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9(6), 693–705 (2017).
Lidl R., Müller W.B.: Permutation polynomials in RSA-cryptosystems. In: Proceedings of CRYPTO’83 Advances in Cryptology, Santa Barbara, CA, USA, August 21–24, pp. 293–301 (1983).
Lidl R., Mullen G.L., Turnwald G.: Dickson Polynomials. Monographs and Surveys in Pure and Applied Mathematics, vol. 65. Chapman and Hall/CRC, Boca Raton (1993).
Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematica and Its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997).
Lee J., Park Y.H.: Some permuting trinomials over finite fields. Acta Math. Sci. Ser. B (English Ed.) 17, 250–254, 07 (1997).
Li K., Qu L., Li C., Fu S.: New permutation trinomials constructed from fractional polynomials. arXiv:1605.06216 (2016).
Li K., Qu L., Chen X.: New classes of permutation binomials and permutation trinomials over finite fields. Finite Fields Appl. 43, 69–85 (2017).
Li K., Qu L., Chen X., Li C.: Permutation polynomials of the form \(cx+\rm Tr_{q^l/q}(x^a)\) and permutation trinomials over finite fields with even characteristic. Cryptogr. Commun. 10(3), 531–554 (2018).
Li K., Qu L., Wang Q.: New constructions of permutation polynomials of the form \(x^rh(x^{q-1})\) over \({\mathbb{F}}_{q^2}\). Des. Codes Cryptogr. (2017). https://doi.org/10.1007/s10623-017-0452-3.
Li K., Qu L., Wang Q.: Compositional inverses of permutation polynomials of the form \(x^rh(x^s)\) over finite fields. Cryptogr. Commun. (2018). https://doi.org/10.1007/s12095-018-0292-7.
Mullen G.L., Panario D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013).
Niederreiter H., Winterhof A.: Cyclotomic R-orthomorphisms of finite fields. Discret. Math. 295(1–3), 161–171 (2005).
Rivest R.L., Shamir A., Adleman L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978).
Schwenk J., Huber K.: Public key encryption and digital signatures based on permutation polynomials. Electron. Lett. 34(8), 759–760 (1998).
Wang Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Sequences, Subsequences, and Consequences, International Workshop, SSC 2007, Los Angeles, CA, USA, May 31–June 2, 2007, Revised Invited Papers, pp. 119–128 (2007).
Wang Q.: A note on inverses of cyclotomic mapping permutation polynomials over finite fields. Finite Fields Appl. 45, 422–427 (2017).
Yuan P., Ding C.: Further results on permutation polynomials over finite fields. Finite Fields Appl. 27, 88–103 (2014).
Yuan P., Ding C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17(6), 560–574 (2011).
Yuan J., Carlet C., Ding C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006).
Zha Z., Hu L., Fan S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017).
Zieve M.: Permutation polynomials on \(\mathbb{F}_q\) induced from bijective Rédei functions on subgroups of the multiplicative group of \(\mathbb{F}_q^*\). arXiv:1310.0776 (2013).
Zieve M.E.: On some permutation polynomials over \({\mathbb{F}}_{q}\) of the form \(x^rh(x^{(q-1)/d})\). Proc. Am. Math. Soc. 137(7), 2209–2216 (2009).
Zheng Y., Yuan P., Pei D.: Large classes of permutation polynomials over \({\mathbb{F}}_{q^2}\). Des. Codes Cryptogr. 81(3), 505–521 (2016).
Zheng Y., Yu Y., Zhang Y., Pei D.: Piecewise constructions of inverses of cyclotomic mapping permutation polynomials. Finite Fields Appl. 40, 1–9 (2016).
Acknowledgements
We thank the anonymous referees for their helpful suggestions. This work was supported by the National Key Research and Development Program of China (No. 2016YFB0800401), Hubei Provincial Natural Science Foundation of China (2016CFB454), Science and Technology on Communication Security Laboratory (No. 6142103010701), the National Natural Science Foundation of China (Nos. 61572491 and 11688101) and NSERC of Canada.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Carlet.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fu, S., Feng, X., Lin, D. et al. A recursive construction of permutation polynomials over \({\mathbb {F}}_{q^2}\) with odd characteristic related to Rédei functions. Des. Codes Cryptogr. 87, 1481–1498 (2019). https://doi.org/10.1007/s10623-018-0548-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-018-0548-4