Abstract
Little theoretical work has been done on (n, m)-functions when \(\frac{n}{2}<m<n\), even though these functions can be used in Feistel ciphers, and actually play an important role in several block ciphers. Nyberg has shown that the differential uniformity of such functions is bounded below by \(2^{n-m}+2\) if n is odd or if \(m>\frac{n}{2}\). In this paper, we first characterize the differential uniformity of those (n, m)-functions of the form \(F(x,z)=\phi (z)I(x)\), where I(x) is the (m, m)-inverse function and \(\phi (z)\) is an \((n-m,m)\)-function. Using this characterization, we construct an infinite family of differentially \(\Delta \)-uniform \((2m-1,m)\)-functions with \(m\ge 3\) achieving Nyberg’s bound with equality, which also have high nonlinearity and not too low algebraic degree. We then discuss an infinite family of differentially 4-uniform \((m+1,m)\)-functions in this form, which leads to many differentially 4-uniform permutations. We also present a method to construct infinite families of \((m+k,m)\)-functions with low differential uniformity and construct an infinite family of \((2m-2,m)\)-functions with \(\Delta \le 2^{m-1}-2^{m-6}+2\) for any \(m\ge 8\). The constructed functions in this paper may provide more choices for the design of Feistel ciphers.
Similar content being viewed by others
References
Adams C.M.: Constructing symmetric ciphers using the CAST design procedure. Des. Codes Cryptogr. 12, 283–316 (1997).
Anderson R., Biham E., Knudsen L.: Serpent: a proposal for the advanced encryption standard. NIST AES Propos. 174, 1–23 (1998).
Biham E., Anderson R., Knudsen L.: Serpent: a new block cipher proposal. In: International Workshop on Fast Software Encryption, vol. 1372. Springer, Berlin, pp. 222–238 (1998).
Bogdanov A., Knudsen L.R., Leander G., Paar C., Poschmann A., Robshaw M.J.B., Seurin Y., Vikkelsoe C.: PRESENT: an ultra-lightweight block cipher. CHES 2007. Lect. Notes Comput. Sci. 4727, 450–466 (2007).
Bosma W., Cannon J., Playoust C.: The magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997).
Carlet C.: Vectorial Boolean functions for cryptography. Chapter of the monography. In: Crama Y., Hammer P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press, Cambridge (2010).
Carlet C.: Boolean and vectorial plateaued functions and APN functions. IEEE Trans. Inf. Theory 61(11), 6272–6289 (2015).
Carlet C.: Open questions on nonlinearity and on APN functions. In: International Workshop on the Arithmetic of Finite Fields, pp. 83–107 (2015).
Carlet C., AlSalami Y.: A new construction of differentially \(4\)-uniform \((n, n-1)\)-functions. Adv. Math. Commun. 9(4), 541–565 (2015).
Carlet C., Tang D., Tang X.H., Liao Q.Y.: New construction of differentially 4-uniform bijections. Inf. Secur. Cryptol. 8567, 22–38 (2014).
Daemen J., Rijmen V.: The Design of Rijndael: AES: The Advanced Encryption Standard. Springer, Berlin (2002).
Dillon J.F.: Elementary Hadamard Difference Sets. University of Maryland, College Park (1974).
European Telecommunications Standards Institute, Technical Specification 135 202 V9.0.0: Universal mobile telecommunications system (UMTS); LTE; specification of the 3GPP confidentiality and integrity algorithms; Document 2: KASUMI specification (3GPP TS 35.202 V9.0.0 Release 9).
Knudsen L.R., Robshaw M.: The Block Cipher Companion. Springer, Berlin (2011).
Lidl R., Niederreiter H.: Finite fields: encyclopedia of mathematics and its applications. Comput. Math. Appl. 33(7), 136 (1997).
Macwilliams F.J., Sloane N.J.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977).
Matsui M.: New block encryption algorithm MISTY. In: International Workshop on Fast Software Encryption, vol. 1267, pp. 54–68. Springer, Berlin (1997).
National Institute of Standards and Technology: Data Encryption Standard (DES), Federal Information Processing Standards Publication 49-3. United States National Institute of Standards and Technology (NIST). Reaffirmed on October 25 (1999).
National Institute of Standards and Technology: Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197. United States National Institute of Standards and Technology (NIST) (2001).
Nyberg K.: Perfect non-linear S-boxes. In: Proceedings of EUROCRYPT’91, Lecture Notes in Computer Science, vol. 547, pp. 378–386 (1992).
Nyberg K., Knudsen L.R.: Provable security against a differential attack. J. Cryptol. 8, 27–37 (1995).
Picek S., Mazumdar B., Mukhopadhyay D., Batina L.: Modified transparency order property: solution or just another attempt. Int. Conf. Secur. 9354, 210–227 (2015).
Piret G., Roche T., Carlet C.: PICARO—a block cipher allowing efficient higher-order side-channel resistance. In: International Conference on Applied Cryptography and Network Security, pp. 311–328 (2012).
Williams K.: Note on cubics over \(GF(2^n)\) and \(GF(3^n)\). J. Number Theory 7, 361–365 (1975).
Zhang W.G., Xie C.L., Pasalic E.: Large sets of orthogonal sequences suitable for applications in CDMA systems. IEEE Trans. Inf. Theory 62(6), 3757–3767 (2016).
Acknowledgements
We are indebted to the anonymous reviewers for their valuable comments. We would also like to thank Wolfgang Schmid and Tailin Niu for useful discussions for Proposition 4.7.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Pott.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by the National Science and Technology Major Project under Grant 2017YFB0802001 and the Nature Science Foundation of China (NSFC) under Grants 61722213, 11531002, 61572026.
Appendix A: Complete proof of Proposition 4.6
Appendix A: Complete proof of Proposition 4.6
Proposition 4.6
Let m, l be positive integers and \(1\le k\le m-2\). Let \(U_i\)\((1\le i \le m-k-1)\) be disjoint sets in \({\mathbb {F}}_2^k\) satisfying \(\sum \nolimits _{i=1}^{m-k-1}\#U_i\le 2^{k-2}-l\) and such that, for any \(U_i\), any element in \({\mathbb {F}}_2^k\) appears at least 2l times in the multiset \(\{*\ z_1+z_2| (z_1,z_2)\in U_i\times U_i\ *\}\).
Consider the function \(F:{\mathbb {F}}_2^{m+k}\rightarrow {\mathbb {F}}_{2^m}\) in the form \(F(x,z)=\phi (z)I(x)\), where I(x) is the (m, m)-inverse function and \(\phi :{\mathbb {F}}_2^k\rightarrow {\mathbb {F}}_{2^m}\) is defined as
and satisfies \(Rank\{\phi (z)|z\in {\mathbb {F}}_2^k\}=m\), \(L:{\mathbb {F}}_2^k\rightarrow {\mathbb {F}}_{2^m}\) is linear and \(c_i\ (0\le i \le m-k-1)\) are constants in \({\mathbb {F}}_{2^m}\). Then F is a differentially \(\Delta \)-uniform function with \(\Delta \le 2^{k+1}-4l+2\).
Proof
Let \(U_0={\mathbb {F}}_2^k\setminus \bigcup \nolimits _{i=1}^{m-k-1} U_i\). According to the conditions on \(\phi (z)\) and the fact that \(\{L(z)|z\in {\mathbb {F}}_2^k\}\) is a vector space, we have
The last step holds since for any i, \(\{L(z)+c_i|z\in {\mathbb {F}}_2^k\}\subseteq \mathrm{Span}(\{L(z)|z\in {\mathbb {F}}_2^{k}\}\cup c_i)\). It is clear that the span of a set does not change its rank, then
Thus the last inequality is an equality, we have
and
For one thing, \(c_i\ne 0\) because of (11) for any \(0\le i \le m-k-1\). Moreover, according to (12), we have \(c_i\notin \{L(z)|z\in {\mathbb {F}}_2^k\}\) for any \(0\le i \le m-k-1\), which means \(\phi (z)\) does not vanish for any \(z\in {\mathbb {F}}_2^k\). For another, assume that there exists \(z_{i_1}\ne z_{i_2}\in {\mathbb {F}}_2^k\) such that \(\phi (z_{i_1})=\phi (z_{i_2})\), then \(L(z_{i_1})+c_{i_1}=L(z_{i_2})+c_{i_2}\). If \(c_{i_1}=c_{i_2}\), notice that L(z) is a linear injection according to (10), then \(z_{i_1}=z_{i_2}\), a contradiction. If \(c_{i_1}\ne c_{i_2}\), then \(0\ne c_{i_1}+c_{i_2}\in \{L(z)|z\in {\mathbb {F}}_2^k\}\). According to (12), then \(c_{i_1}+c_{i_2}\notin \mathrm{Span}\{c_i|0\le i \le m-k-1\}\), a contradiction. Thus \(\phi (z)\) is an injection. Then we only need to verify the last condition in Proposition 3.1, that is, for any \(d\in {\mathbb {F}}_2^k\), \(t\in {\mathbb {F}}^*_{2^m}\),
Notice that \(U_i\)\((1\le i \le m-k-1)\) are disjoint sets satisfying \(\sum \nolimits _{i=1}^{m-k-1}\#U_i\le 2^{k-2}-l\), then \(\#U_0\ge 2^k-(2^{k-2}-l)= 3*2^{k-2}+l\), we have for any \(d\in {\mathbb {F}}_2^k\),
The reason of (14) is
For any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\), if \(t+L(d)=0\), notice that \(\phi (z)=L(z)+c_0\) for any \(z\in U_0\), then we have
Then (13) holds in this case since
the last step follows from \(0\le \#U\le 2^{k-2}-l\). Thus we only need to consider the case \(d\in {\mathbb {F}}_2^k\), \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\).
Since \(\mathrm{Rank}\{\phi (z)|z\in {\mathbb {F}}_2^k\}=m\) leads to \(\mathrm{Span}\{\phi (z)|z\in {\mathbb {F}}_2^k\}^\perp =\{0\}\), we have \(\gamma \notin \mathrm{Span}\{\phi (z)|z\in {\mathbb {F}}_2^k\}^\perp \) for any \(\gamma \in {\mathbb {F}}^*_{2^m}\). Hence, for any \(\gamma \in {\mathbb {F}}^*_{2^m}\), there exists \(\beta \in \mathrm{Span}\{\phi (z)|z\in {\mathbb {F}}_2^k\}\) such that \(\mathrm{Tr}_m(\gamma \beta )=1\). That is, for any \(\gamma \in {\mathbb {F}}^*_{2^m}\), there exists \(z\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m(\phi (z)\gamma )=1\).
For any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\), \(\frac{t}{(t+L(d))^2}\) does not vanish and the mappings \(z\rightarrow \frac{(L(z)+c_i)t}{(t+L(d))^2}\) are affine functions since L(z) is linear, where \(0\le i \le m-k-1\). Let us apply the observation above with \(\gamma =\frac{t}{(t+L(d))^2}\). Then there exists \(z_0\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m\left( \frac{\phi (z_0)t}{(t+L(d))^2}\right) =1\). The rest of the proof is divided into two cases \(z_0\in U_0\) and \(z_0\notin U_0\).
Case 1\(z_0\in U_0\).
Then \(\phi (z_0)=L(z_0)+c_0\). Since there exists \(z\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m\left( \frac{(L(z)+c_0)t}{(t+L(d))^2}\right) =1\) and \(z\rightarrow \frac{(L(z)+c_0)t}{(t+L(d))^2}\) is an affine function, we can apply Fact 1 and we deduce:
In this case, we will only consider those z satisfying \(z,z+d\in U_0\). Then
for these z.
Further, for any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\), we have
The last inequality follows from (14) and (15).
Case 2\(z_0\notin U_0\).
Then there exists \(1\le i \le m-k-1\) such that \(z_0\in U_i\). Thus \(\phi (z_0)=L(z_0)+c_i\), which means there exists \(z\in {\mathbb {F}}_2^k\) such that \(\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\). Since \(z\rightarrow \frac{(L(z)+c_i)t}{(t+L(d))^2}\) is an affine function, we have
according to Fact 1. The rest of the proof is divided into two subcases.
Subcase 2.1\(\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\right\} =2^{k-1}\).
Then
This means
no matter constant \(\mathrm{Tr}_m\left( \frac{(c_0+c_i)t}{(t+L(d))^2}\right) +1\) equals 0 or 1.
Notice that both (14) and (15) also hold in this subcase, similar to Case 1, we only consider those z satisfying \(z,z+d\in U_0\). Then
for these z.
Thus for any \(d\in {\mathbb {F}}_2^{k}\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\),
for the same reason as in Case 1.
Subcase 2.2\(\#\left\{ z\in {\mathbb {F}}_2^k\bigg |\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\right\} =2^k\).
Then for any \(z\in {\mathbb {F}}_2^k\), \(\mathrm{Tr}_m\left( \frac{(L(z)+c_i)t}{(t+L(d))^2}\right) =1\). In this subcase, we will only consider those z satisfying \(z,z+d\in U_i\), then for these z, we have
Since for any \(d\in {\mathbb {F}}_2^k\) appears at least 2l times in the multiset \(\{*\ z_1+z_2| (z_1,z_2)\in U_i\times U_i\ *\}\) for any \(U_i\), then there are at least 2l different \(z_1\in U_i\) such that \(z_2=z_1+d\in U_i\). This means for any \(d\in {\mathbb {F}}_2^k\),
Thus for any \(d\in {\mathbb {F}}_2^k\) and \(t\in {\mathbb {F}}^*_{2^m}\) satisfying \(t+L(d)\ne 0\), we have
All in all, \(\Delta \le 2^{k+1}-4l+2\) according to Proposition 3.1. \(\square \)
1.1 Appendix B: \((2m - 2,m)\)-functions with low differential uniformity in the form \(F(x,z) = \phi (z)I(x)\) when m = 5,6,7
A differentially 14-uniform (8, 5)-function: Let \(F_{8,5}(x,z)=\phi (z)I(x)\), where I(x) is the inverse function on \({\mathbb {F}}_{2^5}\) and \(\phi :{\mathbb {F}}_2^3\rightarrow {\mathbb {F}}_{2^5}\) is presented by Table 1:
where \(\alpha \) is a defining element of \({\mathbb {F}}_{2^5}\).
A differentially 30-uniform (10, 6)-function: Let \(F_{10,6}(x,z)=\phi (z)I(x)\), where I(x) is the inverse function on \({\mathbb {F}}_{2^6}\) and \(\phi :{\mathbb {F}}_2^4\rightarrow {\mathbb {F}}_{2^6}\) is presented by Table 2:
where \(\alpha \) is a defining element of \({\mathbb {F}}_{2^6}\).
A differentially 58-uniform (12, 7)-function: Let \(F_{12,7}(x,z)=\phi (z)I(x)\), where I(x) is the inverse function on \({\mathbb {F}}_{2^7}\) and \(\phi :{\mathbb {F}}_2^5\rightarrow {\mathbb {F}}_{2^7}\) is presented by Table 3:
where \(\alpha \) is a defining element of \({\mathbb {F}}_{2^7}\).
Rights and permissions
About this article
Cite this article
Carlet, C., Chen, X. & Qu, L. Constructing infinite families of low differential uniformity (n, m)-functions with \(m>n/2\). Des. Codes Cryptogr. 87, 1577–1599 (2019). https://doi.org/10.1007/s10623-018-0553-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-018-0553-7