Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Common information, matroid representation, and secret sharing for matroid ports

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Linear information and rank inequalities as, for instance, Ingleton inequality, are useful tools in information theory and matroid theory. Even though many such inequalities have been found, it seems that most of them remain undiscovered. Improved results have been obtained in recent works by using the properties from which they are derived instead of the inequalities themselves. We apply here this strategy to the classification of matroids according to their representations and to the search for bounds on secret sharing for matroid ports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahlswede R., Körner J.: On the connection between the entropies of input and output distributions of discrete memoryless channels. Proceedings of the 5th Brasov Conference on Probability Theory, Brasov, 1974. Editura Academiei, Bucuresti, 13–23 (1977).

  2. Ahlswede R., Körner J.: Appendix: on common information and related characteristics of correlated information sources. In: Ahlswede R., et al. (eds.) General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol. 4123, pp. 664–677. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11889342_41.

  3. Alfter M., Hochstättler W.: On pseudomodular matroids and adjoints. Discret. Appl. Math. 60, 3–11 (1995).

    MathSciNet  MATH  Google Scholar 

  4. Beimel A.: Secret-sharing schemes: a survey. In: Chee Y.M., et al. (eds.) Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol. 6639, pp. 11–46. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2.

    Chapter  Google Scholar 

  5. Beimel A., Livne N.: On matroids and nonideal secret sharing. IEEE Trans. Inf. Theory 54(6), 2626–2643 (2008).

    MathSciNet  MATH  Google Scholar 

  6. Beimel A., Orlov I.: Secret sharing and non-Shannon information inequalities. IEEE Trans. Inf. Theory 57, 5634–5649 (2011).

    MathSciNet  MATH  Google Scholar 

  7. Beimel A., Livne N., Padró C.: Matroids can be far from ideal secret sharing. In: Canetti R. (ed.) Theory of Cryptography. TCC 2008. Lecture Notes in Computer Science, vol. 4948, pp. 194–212. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_12.

    Chapter  Google Scholar 

  8. Beimel A., Ben-Efraim A., Padró C., Tyomkin I.: Multi-linear secret-sharing schemes. In: Lindell Y. (ed.) Theory of Cryptography. TCC 2014. Lecture Notes in Computer Science, vol. 8349, pp. 394–418. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_17.

    Chapter  Google Scholar 

  9. Ben-Efraim A.: Secret-sharing matroids need not be algebraic. Discret. Math. 339(8), 2136–2145 (2016).

    MathSciNet  MATH  Google Scholar 

  10. Bollen G.P.: Frobenius flocks and algebraicity of matroids. (PhD Thesis) Eindhoven: Technische Universiteit Eindhoven (2018).

  11. Bollen G.P., Dustin Cartwright D., Draisma J.: Matroids over one-dimensional groups. arXiv:1812.08692 [math.CO] (2018).

  12. Brickell E.F., Davenport D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991).

    MATH  Google Scholar 

  13. Csirmaz L.: The size of a share must be large. J. Cryptol. 10, 223–231 (1997).

    MathSciNet  MATH  Google Scholar 

  14. Csirmaz L.: Secret sharing and duality. Cryptology ePrint Archive, Report 2019/1197 https://eprint.iacr.org/2019/1197 (2019).

  15. Csiszar I., Körner J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic Press, New York (1981).

    MATH  Google Scholar 

  16. Dougherty R., Freiling C., Zeger K.: Six new non-Shannon information inequalities. In: 2006 IEEE International Symposium on Information Theory, pp. 233–236. IEEE, Seattle, WA (2006). https://doi.org/10.1109/ISIT.2006.261840.

  17. Dougherty R., Freiling C., Zeger K.: Networks, matroids, and non-Shannon information inequalities. IEEE Trans. Inf. Theory 53(6), 1949–1969 (2007).

    MathSciNet  MATH  Google Scholar 

  18. Dougherty R., Freiling C., Zeger K.: Linear rank inequalities on five or more variables. arXiv:0910.0284v3 (2009).

  19. Dougherty R., Freiling C., Zeger K.: Non-Shannon information inequalities in four random variables. arXiv:1104.3602v1 (2011).

  20. Dougherty R., Freiling C., Zeger K.: Characteristic-dependent linear rank inequalities with applications to network coding. IEEE Trans. Inf. Theory 61(5), 2510–2530 (2015).

    MathSciNet  MATH  Google Scholar 

  21. Farràs O., Kaced T., Martín S., Padró, C.: Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing. Advances in Cryptology: Eurocrypt: Lecture Notes in Comput. Sci. 10820(2018), 597–621 (2018).

  22. Farràs O., Kaced T., Martín S., Padró C.: Improving the linear programming technique in the search for lower bounds in secret sharing. IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2020.3005706. (Full version of [21]).

  23. Fujishige S.: Polymatroidal dependence structure of a set of random variables. Inf. Control 39, 55–72 (1978).

    MathSciNet  MATH  Google Scholar 

  24. Fujishige S.: Entropy functions and polymatroids–combinatorial structures in information theory. Electron. Commun. Jpn. 61, 14–18 (1978).

    MathSciNet  Google Scholar 

  25. Gács P., Körner J.: Common information is far less than mutual information. Probl. Control Inf. Theory 2, 149–162 (1973).

    MathSciNet  MATH  Google Scholar 

  26. Gürpinar E., Romashchenko A.: How to use undiscovered information inequalities: direct applications of the copy lemma. In: IEEE International Symposium on Information Theory (ISIT), pp. 1377–1381 (2019). https://doi.org/10.1109/ISIT.2019.8849309.

  27. Ingleton A.W.: Representation of matroids. In: Welsh D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 149–167. Academic Press, London (1971).

    Google Scholar 

  28. Jackson W.A., Martin K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994).

    MathSciNet  MATH  Google Scholar 

  29. Jackson W.A., Martin K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9, 267–286 (1996).

    MathSciNet  MATH  Google Scholar 

  30. Kaced T.: Equivalence of two proof techniques for non-Shannon inequalities. arXiv:1302.2994 (2013).

  31. Kaced T.: Information inequalities are not closed under polymatroid duality. IEEE Trans. Inf. Theory 64, 4379–4381 (2018).

    MathSciNet  MATH  Google Scholar 

  32. Kinser R.: New inequalities for subspace arrangements. J. Combin. Theory Ser. A 118, 152–161 (2011).

    MathSciNet  MATH  Google Scholar 

  33. Lindström B.: A non-linear algebraic matroid with infinite characteristic set. Discret. Math. 59, 319–320 (1986).

    MATH  Google Scholar 

  34. Makarychev K., Makarychev Y., Romashchenko A., Vereshchagin N.: A new class of non-Shannon-type inequalities for entropies. Commun. Inf. Syst. 2, 147–166 (2002).

    MathSciNet  MATH  Google Scholar 

  35. Martí-Farré J., Padró C.: On secret sharing schemes, matroids and polymatroids. J. Math. Cryptol. 4, 95–120 (2010).

    MathSciNet  MATH  Google Scholar 

  36. Martín S., Padró C., Yang A.: Secret sharing, rank inequalities, and information inequalities. IEEE Trans. Inf. Theory 62, 599–609 (2016).

    MathSciNet  MATH  Google Scholar 

  37. Matúš F.: Matroid representations by partitions. Discret. Math. 203, 169–194 (1999).

    MathSciNet  MATH  Google Scholar 

  38. Matúš F.: Infinitely many information inequalities. In: Proc. IEEE International Symposium on Information Theory, (ISIT), pp. 2101–2105 (2007).

  39. Matúš F.: Classes of matroids closed under minors and principal extensions. Combinatorica 38, 935–954 (2018).

    MathSciNet  MATH  Google Scholar 

  40. Matúš F.: Algebraic matroids are almost entropic. To appear in Proceedings of the AMS. https://doi.org/10.1090/proc/13846.

  41. Matúš F., Csirmaz L.: Entropy region and convolution. IEEE Trans. Inf. Theory 62, 6007–6018 (2016).

    MathSciNet  MATH  Google Scholar 

  42. Mayhew D., Royle G.F.: Matroids with nine elements. J. Comb. Theory Ser. B 98, 415–431 (2008).

    MathSciNet  MATH  Google Scholar 

  43. Mayhew D., Newman M., Whittle G.: On excluded minors for real representativity. J. Comb. Theory. B 99, 685–689 (2009).

    MATH  Google Scholar 

  44. Metcalf-Burton J.R.: Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid. Discret. Math. 311, 651–662 (2011).

    MathSciNet  MATH  Google Scholar 

  45. Nelson P., van der Pol J.: Doubly exponentially many Ingleton matroids. SIAM J. Discret. Math. 32(2), 1145–1153 (2018).

    MathSciNet  MATH  Google Scholar 

  46. Oxley J.G.: Matroid Theory, 2nd edn. Oxford University Press, New York (2011).

    MATH  Google Scholar 

  47. Padró C.: Lecture Notes in secret sharing. Cryptology ePrint Archive, Report 2012/674 (2912).

  48. Padró C., Vázquez L., Yang A.: Finding lower bounds on the complexity of secret sharing schemes by linear programming. Discret. Appl. Math. 161, 1072–1084 (2013).

    MathSciNet  MATH  Google Scholar 

  49. Pendavingh R.A., van Zwam S.H.M.: Skew partial fields, multilinear representations of matroids, and a matrix tree theorem. Adv. Appl. Math. 50, 201–226 (2013).

    MathSciNet  MATH  Google Scholar 

  50. Peña V., Sarria H.: How to find new characteristic-dependent linear rank inequalities using binary matrices as a guide. arXiv:1905.00003 (2019).

  51. Rado R.: Note on independence functions. Proc. Lond. Math. Soc. 3(7), 300–320 (1957).

    MathSciNet  MATH  Google Scholar 

  52. Royle G., Mayhew D.: Matroids on 9 elements. http://doi.org/10.26182/5e3378f0ca2cd.

  53. Seymour P.D.: On secret-sharing matroids. J. Comb. Theory Ser. B 56, 69–73 (1992).

    MathSciNet  MATH  Google Scholar 

  54. Simonis J., Ashikhmin A.: Almost affine codes. Des. Codes. Cryptogr. 14(2), 179–197 (1998).

    MathSciNet  MATH  Google Scholar 

  55. Stinson D.R.: Decomposition constructions for secret-sharing schemes. IEEE Trans. Inf. Theory 40, 118–125 (1994).

    MathSciNet  MATH  Google Scholar 

  56. Thakor S., Chan T., Grant A.: Capacity bounds for networks with correlated sources and characterisation of distributions by entropies. IEEE Trans. Inf. Theory 63, 3540–3553 (2017).

    MathSciNet  MATH  Google Scholar 

  57. van Dijk M.: On the information rate of perfect secret sharing schemes. Des. Codes Cryptogr. 6, 143–169 (1995).

    MathSciNet  MATH  Google Scholar 

  58. Vertigan D.: Dowling geometries representable over rings. Ann. Comb. 19, 225 (2015).

    MathSciNet  MATH  Google Scholar 

  59. Welsh D.J.A.: Matroid Theory. Academic Press, London (1976).

    MATH  Google Scholar 

  60. Yeung R.W.: Information Theory and Network Coding. Springer, Berlin (2008).

    MATH  Google Scholar 

  61. Zhang Z., Yeung R.W.: A non-Shannon-type conditional inequality of information quantities. IEEE Trans. Inf. Theory 43, 1982–1986 (1997).

    MathSciNet  MATH  Google Scholar 

  62. Zhang Z., Yeung R.W.: On characterization of entropy function via information inequalities. IEEE Trans. Inf. Theory 44, 1440–1452 (1998).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dillon Mayhew and Gordon F. Royle for helpful suggestions and also for providing us the matroid database [52]. We thank Guus P. Bollen for his helpful suggestions on algebraic matroids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Farràs.

Additional information

Communicated by C. Blundo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Michael Bamiloshin and Oriol Farràs were supported by the grant 2017 SGR 705 from the Government of Catalonia and Grant RTI2018-095094-B-C21 “CONSENT” from the Spanish Government. Also, Michael Bamiloshin has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 713679 and from the Universitat Rovira i Virgili. Aner Ben-Efraim was supported by ISF Grant 152/17. Carles Padró was supported by the Spanish Government through Grant MTM2016-77213-R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamiloshin, M., Ben-Efraim, A., Farràs, O. et al. Common information, matroid representation, and secret sharing for matroid ports. Des. Codes Cryptogr. 89, 143–166 (2021). https://doi.org/10.1007/s10623-020-00811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00811-1

Keywords

Mathematics Subject Classification