Abstract
Linear information and rank inequalities as, for instance, Ingleton inequality, are useful tools in information theory and matroid theory. Even though many such inequalities have been found, it seems that most of them remain undiscovered. Improved results have been obtained in recent works by using the properties from which they are derived instead of the inequalities themselves. We apply here this strategy to the classification of matroids according to their representations and to the search for bounds on secret sharing for matroid ports.
Similar content being viewed by others
References
Ahlswede R., Körner J.: On the connection between the entropies of input and output distributions of discrete memoryless channels. Proceedings of the 5th Brasov Conference on Probability Theory, Brasov, 1974. Editura Academiei, Bucuresti, 13–23 (1977).
Ahlswede R., Körner J.: Appendix: on common information and related characteristics of correlated information sources. In: Ahlswede R., et al. (eds.) General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol. 4123, pp. 664–677. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11889342_41.
Alfter M., Hochstättler W.: On pseudomodular matroids and adjoints. Discret. Appl. Math. 60, 3–11 (1995).
Beimel A.: Secret-sharing schemes: a survey. In: Chee Y.M., et al. (eds.) Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol. 6639, pp. 11–46. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2.
Beimel A., Livne N.: On matroids and nonideal secret sharing. IEEE Trans. Inf. Theory 54(6), 2626–2643 (2008).
Beimel A., Orlov I.: Secret sharing and non-Shannon information inequalities. IEEE Trans. Inf. Theory 57, 5634–5649 (2011).
Beimel A., Livne N., Padró C.: Matroids can be far from ideal secret sharing. In: Canetti R. (ed.) Theory of Cryptography. TCC 2008. Lecture Notes in Computer Science, vol. 4948, pp. 194–212. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_12.
Beimel A., Ben-Efraim A., Padró C., Tyomkin I.: Multi-linear secret-sharing schemes. In: Lindell Y. (ed.) Theory of Cryptography. TCC 2014. Lecture Notes in Computer Science, vol. 8349, pp. 394–418. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_17.
Ben-Efraim A.: Secret-sharing matroids need not be algebraic. Discret. Math. 339(8), 2136–2145 (2016).
Bollen G.P.: Frobenius flocks and algebraicity of matroids. (PhD Thesis) Eindhoven: Technische Universiteit Eindhoven (2018).
Bollen G.P., Dustin Cartwright D., Draisma J.: Matroids over one-dimensional groups. arXiv:1812.08692 [math.CO] (2018).
Brickell E.F., Davenport D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991).
Csirmaz L.: The size of a share must be large. J. Cryptol. 10, 223–231 (1997).
Csirmaz L.: Secret sharing and duality. Cryptology ePrint Archive, Report 2019/1197 https://eprint.iacr.org/2019/1197 (2019).
Csiszar I., Körner J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic Press, New York (1981).
Dougherty R., Freiling C., Zeger K.: Six new non-Shannon information inequalities. In: 2006 IEEE International Symposium on Information Theory, pp. 233–236. IEEE, Seattle, WA (2006). https://doi.org/10.1109/ISIT.2006.261840.
Dougherty R., Freiling C., Zeger K.: Networks, matroids, and non-Shannon information inequalities. IEEE Trans. Inf. Theory 53(6), 1949–1969 (2007).
Dougherty R., Freiling C., Zeger K.: Linear rank inequalities on five or more variables. arXiv:0910.0284v3 (2009).
Dougherty R., Freiling C., Zeger K.: Non-Shannon information inequalities in four random variables. arXiv:1104.3602v1 (2011).
Dougherty R., Freiling C., Zeger K.: Characteristic-dependent linear rank inequalities with applications to network coding. IEEE Trans. Inf. Theory 61(5), 2510–2530 (2015).
Farràs O., Kaced T., Martín S., Padró, C.: Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing. Advances in Cryptology: Eurocrypt: Lecture Notes in Comput. Sci. 10820(2018), 597–621 (2018).
Farràs O., Kaced T., Martín S., Padró C.: Improving the linear programming technique in the search for lower bounds in secret sharing. IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2020.3005706. (Full version of [21]).
Fujishige S.: Polymatroidal dependence structure of a set of random variables. Inf. Control 39, 55–72 (1978).
Fujishige S.: Entropy functions and polymatroids–combinatorial structures in information theory. Electron. Commun. Jpn. 61, 14–18 (1978).
Gács P., Körner J.: Common information is far less than mutual information. Probl. Control Inf. Theory 2, 149–162 (1973).
Gürpinar E., Romashchenko A.: How to use undiscovered information inequalities: direct applications of the copy lemma. In: IEEE International Symposium on Information Theory (ISIT), pp. 1377–1381 (2019). https://doi.org/10.1109/ISIT.2019.8849309.
Ingleton A.W.: Representation of matroids. In: Welsh D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 149–167. Academic Press, London (1971).
Jackson W.A., Martin K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994).
Jackson W.A., Martin K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9, 267–286 (1996).
Kaced T.: Equivalence of two proof techniques for non-Shannon inequalities. arXiv:1302.2994 (2013).
Kaced T.: Information inequalities are not closed under polymatroid duality. IEEE Trans. Inf. Theory 64, 4379–4381 (2018).
Kinser R.: New inequalities for subspace arrangements. J. Combin. Theory Ser. A 118, 152–161 (2011).
Lindström B.: A non-linear algebraic matroid with infinite characteristic set. Discret. Math. 59, 319–320 (1986).
Makarychev K., Makarychev Y., Romashchenko A., Vereshchagin N.: A new class of non-Shannon-type inequalities for entropies. Commun. Inf. Syst. 2, 147–166 (2002).
Martí-Farré J., Padró C.: On secret sharing schemes, matroids and polymatroids. J. Math. Cryptol. 4, 95–120 (2010).
Martín S., Padró C., Yang A.: Secret sharing, rank inequalities, and information inequalities. IEEE Trans. Inf. Theory 62, 599–609 (2016).
Matúš F.: Matroid representations by partitions. Discret. Math. 203, 169–194 (1999).
Matúš F.: Infinitely many information inequalities. In: Proc. IEEE International Symposium on Information Theory, (ISIT), pp. 2101–2105 (2007).
Matúš F.: Classes of matroids closed under minors and principal extensions. Combinatorica 38, 935–954 (2018).
Matúš F.: Algebraic matroids are almost entropic. To appear in Proceedings of the AMS. https://doi.org/10.1090/proc/13846.
Matúš F., Csirmaz L.: Entropy region and convolution. IEEE Trans. Inf. Theory 62, 6007–6018 (2016).
Mayhew D., Royle G.F.: Matroids with nine elements. J. Comb. Theory Ser. B 98, 415–431 (2008).
Mayhew D., Newman M., Whittle G.: On excluded minors for real representativity. J. Comb. Theory. B 99, 685–689 (2009).
Metcalf-Burton J.R.: Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid. Discret. Math. 311, 651–662 (2011).
Nelson P., van der Pol J.: Doubly exponentially many Ingleton matroids. SIAM J. Discret. Math. 32(2), 1145–1153 (2018).
Oxley J.G.: Matroid Theory, 2nd edn. Oxford University Press, New York (2011).
Padró C.: Lecture Notes in secret sharing. Cryptology ePrint Archive, Report 2012/674 (2912).
Padró C., Vázquez L., Yang A.: Finding lower bounds on the complexity of secret sharing schemes by linear programming. Discret. Appl. Math. 161, 1072–1084 (2013).
Pendavingh R.A., van Zwam S.H.M.: Skew partial fields, multilinear representations of matroids, and a matrix tree theorem. Adv. Appl. Math. 50, 201–226 (2013).
Peña V., Sarria H.: How to find new characteristic-dependent linear rank inequalities using binary matrices as a guide. arXiv:1905.00003 (2019).
Rado R.: Note on independence functions. Proc. Lond. Math. Soc. 3(7), 300–320 (1957).
Royle G., Mayhew D.: Matroids on 9 elements. http://doi.org/10.26182/5e3378f0ca2cd.
Seymour P.D.: On secret-sharing matroids. J. Comb. Theory Ser. B 56, 69–73 (1992).
Simonis J., Ashikhmin A.: Almost affine codes. Des. Codes. Cryptogr. 14(2), 179–197 (1998).
Stinson D.R.: Decomposition constructions for secret-sharing schemes. IEEE Trans. Inf. Theory 40, 118–125 (1994).
Thakor S., Chan T., Grant A.: Capacity bounds for networks with correlated sources and characterisation of distributions by entropies. IEEE Trans. Inf. Theory 63, 3540–3553 (2017).
van Dijk M.: On the information rate of perfect secret sharing schemes. Des. Codes Cryptogr. 6, 143–169 (1995).
Vertigan D.: Dowling geometries representable over rings. Ann. Comb. 19, 225 (2015).
Welsh D.J.A.: Matroid Theory. Academic Press, London (1976).
Yeung R.W.: Information Theory and Network Coding. Springer, Berlin (2008).
Zhang Z., Yeung R.W.: A non-Shannon-type conditional inequality of information quantities. IEEE Trans. Inf. Theory 43, 1982–1986 (1997).
Zhang Z., Yeung R.W.: On characterization of entropy function via information inequalities. IEEE Trans. Inf. Theory 44, 1440–1452 (1998).
Acknowledgements
We thank Dillon Mayhew and Gordon F. Royle for helpful suggestions and also for providing us the matroid database [52]. We thank Guus P. Bollen for his helpful suggestions on algebraic matroids.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Blundo.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Michael Bamiloshin and Oriol Farràs were supported by the grant 2017 SGR 705 from the Government of Catalonia and Grant RTI2018-095094-B-C21 “CONSENT” from the Spanish Government. Also, Michael Bamiloshin has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 713679 and from the Universitat Rovira i Virgili. Aner Ben-Efraim was supported by ISF Grant 152/17. Carles Padró was supported by the Spanish Government through Grant MTM2016-77213-R.
Rights and permissions
About this article
Cite this article
Bamiloshin, M., Ben-Efraim, A., Farràs, O. et al. Common information, matroid representation, and secret sharing for matroid ports. Des. Codes Cryptogr. 89, 143–166 (2021). https://doi.org/10.1007/s10623-020-00811-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00811-1