Abstract
Minimal codes are a class of linear codes which gained interest in the last years, thanks to their connections to secret sharing schemes. In this paper we provide the weight distributions and the parameters of families of minimal codes recently introduced by C. Tang, Y. Qiu, Q. Liao, Z. Zhou, answering some open questions.
Similar content being viewed by others
References
Alfarano G.N., Borello M., Neri A.: A geometric characterization of minimal codes and their asymptotic performance. Adv. Math. Commun. https://doi.org/10.3934/amc.2020104.
Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998).
Bartoli D., Bonini M.: Minimal linear codes in odd characteristic. IEEE Trans. Inf. Theory 65(7), 4152–4155 (2019).
Bartoli D., Bonini M., Gűnes B.: An inductive construction of minimal codes. arXiv:1911.09093 (2019).
Berlekamp E.R., McEliece R.J., van Tilborg H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978).
Blakley G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National Computer Conference, New York, USA, pp. 313–317 (1979).
Bonini M., Borello M.: Minimal linear codes arising from blocking sets. J. Algebr. Comb. https://doi.org/10.1007/s10801-019-00930-6.
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Bruck J., Naor M.: The hardness of decoding linear codes with preprocessing. IEEE Trans. Inf. Theory 36(2), 381–385 (1990).
Carlet C., Ding C., Yuan J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).
Chabanne H., Cohen G., Patey A.: Towards secure two-party computation from the wire-tap channel. In: Information Security and Cryptology—ICISC 2013, Heidelberg, Germany, pp. 34–46 (2014).
Chang S., Hyun J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86(10), 2167–2181 (2018).
Cohen G.D., Mesnager S., Patey A.: On minimal and quasi-minimal linear codes. In: IMACC 2013, Heidelberg, Germany, pp. 85–98 (2013).
Ding C.: Linear codes from some \(2\)-designs. IEEE Trans. Inf. Theory 60(6), 3265–3275 (2015).
Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53, 2274–2277 (2007).
Ding C., Luo J., Niederreiter H.: Two weight codes punctured from irreducible cyclic codes. In: Li Y., Ling S., Niederreiter H., Wang H., Xing C., Zhang S. (eds.) Proceedings of the First International Workshop on Coding Theory and Cryptography, pp. 119–124. Singapore, World Scientific (2008).
Ding C., Li N., Li C., Zhou Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016).
Ding C., Heng Z., Zhou Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory 64(10), 6536–6545 (2018).
Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018).
Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010).
Kløve T.: Codes for Error Detection. World Scientific, Singapore (2007).
Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish–Russian International Workshop on Information Theory, Sweden, pp. 276–279 (1993)
Massey J.L.: Some applications of coding theory in cryptography. In: Codes and Cyphers: Cryptography and Coding IV, Essex, England, pp. 33–47 (1995)
Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
Song Y., Li Z., Li Y.M.: Secret sharing with a class of minimal linear codes. Acta Electron. Sin. 41, 220–226 (2013).
Tang C., Qiu Y., Liao Q., Zhou Z.: Full Characterization of Minimal Linear Codes as Cutting Blocking Sets. arXiv:1911.09867 (2019).
Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).
Acknowledgements
The research of D. Bartoli, M. Bonini, and M. Timpanella was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Ding.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bartoli, D., Bonini, M. & Timpanella, M. On the weight distribution of some minimal codes. Des. Codes Cryptogr. 89, 471–487 (2021). https://doi.org/10.1007/s10623-020-00826-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00826-8