Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On certain self-orthogonal AG codes with applications to Quantum error-correcting codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper a construction of quantum codes from self-orthogonal algebraic geometry codes is provided. Our method is based on the CSS construction as well as on some peculiar properties of the underlying algebraic curves, named Swiss curves. Several classes of well-known algebraic curves with many rational points turn out to be Swiss curves. Examples are given by Castle curves, GK curves, generalized GK curves and the Abdón–Bezerra–Quoos maximal curves. Applications of our method to these curves are provided. Our construction extends a previous one due to Hernando, McGuire, Monserrat, and Moyano-Fernández.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdón M., Bezerra J., Quoos L.: Further examples of maximal curves. J. Pure Appl. Algebra 213, 1192–1196 (2009).

    Article  MathSciNet  Google Scholar 

  2. Bartoli D., Montanucci M., Zini G.: AG codes and AG quantum codes from the GGS curve. Des. Codes Cryptogr. 86, 2315–2344 (2018).

    Article  MathSciNet  Google Scholar 

  3. Bartoli D., Giulietti M., Kawakita M., Montanucci M.: New examples of maximal curves with low genus. Finite Fields Appl. 68, 101744 (2020).

    Article  MathSciNet  Google Scholar 

  4. Beelen P., Montanucci M.: A new family of maximal curves. J. Lond. Math. Soc. 2(98), 573–592 (2018).

    Article  MathSciNet  Google Scholar 

  5. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).

    Article  Google Scholar 

  6. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997).

    Article  MathSciNet  Google Scholar 

  7. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  8. Chen H.: Some good quantum error-correcting codes from algebraic geometry codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001).

    Article  Google Scholar 

  9. Feng K., Ma Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004).

    Article  MathSciNet  Google Scholar 

  10. Galindo C., Hernando F.: Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr. 76, 89–100 (2015).

    Article  MathSciNet  Google Scholar 

  11. Garcia A., Tafazolian S.: Certain maximal curves and Cartier operators. Acta Arith. 235(3), 199–218 (2008).

    Article  MathSciNet  Google Scholar 

  12. Garcia A., Güneri C., Stichtenoth H.: A generalization of the Giulietti–Korchmáros maximal curve. Adv. Geom. 10(3), 427–434 (2010).

    Article  MathSciNet  Google Scholar 

  13. Giulietti M., Korchmáros G.: A new family of maximal curves over a finite field. Math. Ann. 343(1), 229–245 (2009).

    Article  MathSciNet  Google Scholar 

  14. Goppa V.D.: Algebraic-geometric codes. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 762–781 (1982). (in Russian).

    MathSciNet  Google Scholar 

  15. Gottesman D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996).

    Article  MathSciNet  Google Scholar 

  16. Grassl M., Rötteler M., Beth T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003).

    Article  MathSciNet  Google Scholar 

  17. Grassl M., Rötteler M.: Quantum MDS codes over small fields. In: IEEE International Symposium on Information Theory—Proceedings, pp. 1104–1108 (2015).

  18. Grover L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 212–219. ACM, New York (1996).

  19. Hernando F., McGuire G., Monserrat F., Moyano-Fernández J.J.: Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Inf. Process. 19, 117 (2020).

    Article  MathSciNet  Google Scholar 

  20. Hirschfeld J.W.P., Korchmáros G., Torres F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008).

  21. Høholdt T., van Lint J., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).

  22. Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006).

    Article  MathSciNet  Google Scholar 

  23. Klappenecker A., Sarvepalli P.K.: Nonbinary quantum codes from Hermitian curves. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 136–143. Lecture Notes in Computer Science, vol. 3857, Springer, Berlin (2006).

  24. Jin L.: Quantum stabilizer codes from maximal curves. IEEE Trans. Inf. Theory 60, 313–316 (2014).

    Article  MathSciNet  Google Scholar 

  25. Jin L., Xing C.P.: Euclidean and Hermitian self-orthogonal Algebraic Geometry codes and their application to Quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012).

    Article  MathSciNet  Google Scholar 

  26. Kim J., Mathews G.L.: Quantum error-correcting codes from algebraic curves. In: Martinez E., Munuera C., Ruano D. (eds.) Adv. Algebraic Geom. Codes, pp. 419–444. World Scientific, Hackensack (2008).

    Chapter  Google Scholar 

  27. Kim J., Walker J.: Nonbinary quantum error-correcting cods from algebraic curves. Discret. Math. 308, 3115–3124 (2008).

    Article  Google Scholar 

  28. La Guardia G.G., Pereira F.R.F.: Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf. Process. 16(6), 165 (2017). https://doi.org/10.1007/s11128-017-1618-7.

    Article  MathSciNet  MATH  Google Scholar 

  29. Montanucci M., Pallozzi Lavorante V.: AG codes from the second generalization of the GK maximal curve. Discret. Math. 343(5), 101810 (2020).

    Article  MathSciNet  Google Scholar 

  30. Montanucci M., Speziali P.: The \(a\)-numbers of Fermat and Hurwitz curves. J. Pure Appl. Algebra 222(2), 477–488 (2018).

    Article  MathSciNet  Google Scholar 

  31. Montanucci M., Timpanella M., Zini G.: AG codes and AG quantum codes from cyclic extensions of the Suzuki and the Ree curves. J. Geom. 109, 23 (2018). https://doi.org/10.1007/s00022-018-0428-0.

    Article  MathSciNet  MATH  Google Scholar 

  32. Munuera C., Sepúlveda A., Torres F.: Castle curves and codes. Adv. Math. Commun. 3, 399–408 (2009).

    Article  MathSciNet  Google Scholar 

  33. Munuera C., Tenório W., Torres F.: Quantum error-correcting codes from algebraic geometry codes of Castle Type. Quantum Inf. Process. 15, 4071–4088 (2016).

    Article  MathSciNet  Google Scholar 

  34. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

  35. Ouyang Y.: Permutation-invariant quantum codes. Phys. Rev. A 90(6), 062317 (2014).

    Article  Google Scholar 

  36. Ouyang Y.: Concatenated quantum codes can attain the quantum Gilbert–Varshamov bound. IEEE Trans. Inf. Theory 60(6), 3117–3122 (2014).

    Article  MathSciNet  Google Scholar 

  37. Ouyang Y.: Permutation-invariant qudit codes from polynomials. Linear Algebra Appl. 532, 43–59 (2017).

    Article  MathSciNet  Google Scholar 

  38. Ouyang Y., Chao R.: Permutation-invariant constant-excitation quantum codes for amplitude damping. IEEE Trans. Inf. Theory 66(5), 2921–2933 (2020).

    Article  MathSciNet  Google Scholar 

  39. Pellikaan R., Shen B.Z., van Wee G.J.M.: Which linear codes are Algebraic-Geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991).

    Article  MathSciNet  Google Scholar 

  40. Ruskai M.B.: Pauli Exchange Errors in Quantum Computation. Phys. Rev. Lett. 85(1), 194–197 (2000).

    Article  Google Scholar 

  41. Shaska T.: Quantum codes from algebraic curves with automorphisms. Condens. Matter Phys. 11, 383–396 (2008).

    Article  Google Scholar 

  42. Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM), pp. 124–134. IEEE Comput. Soc. Press, Los Alamitos (1994).

  43. Shor P.W., Smith G., Smolin J.A., Zeng B.: High performance single-error-correcting quantum codes for amplitude damping. IEEE Trans. Inf. Theory 57(10), 7180–7188 (2011).

    Article  MathSciNet  Google Scholar 

  44. Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996).

    Article  MathSciNet  Google Scholar 

  45. Stichtenoth H.: Self-dual Goppa codes. J. Pure Appl. Algebra 55, 199–211 (1988).

    Article  MathSciNet  Google Scholar 

  46. Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009).

  47. Tsfasman M.A., Vlăduţ S.G., Zink T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of D. Bartoli and G. Zini was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). G. Zini is funded by the project “Attrazione e Mobilità dei Ricercatori” Italian PON Programme (PON-AIM 2018 num. AIM1878214-2) and by the project “VALERE: VAnviteLli pEr la RicErca” of the University of Campania “Luigi Vanvitelli”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Zini.

Additional information

Communicated by G. Korchmaros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, D., Montanucci, M. & Zini, G. On certain self-orthogonal AG codes with applications to Quantum error-correcting codes. Des. Codes Cryptogr. 89, 1221–1239 (2021). https://doi.org/10.1007/s10623-021-00870-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00870-y

Keywords

Mathematics Subject Classification