Abstract
In this paper a construction of quantum codes from self-orthogonal algebraic geometry codes is provided. Our method is based on the CSS construction as well as on some peculiar properties of the underlying algebraic curves, named Swiss curves. Several classes of well-known algebraic curves with many rational points turn out to be Swiss curves. Examples are given by Castle curves, GK curves, generalized GK curves and the Abdón–Bezerra–Quoos maximal curves. Applications of our method to these curves are provided. Our construction extends a previous one due to Hernando, McGuire, Monserrat, and Moyano-Fernández.
Similar content being viewed by others
References
Abdón M., Bezerra J., Quoos L.: Further examples of maximal curves. J. Pure Appl. Algebra 213, 1192–1196 (2009).
Bartoli D., Montanucci M., Zini G.: AG codes and AG quantum codes from the GGS curve. Des. Codes Cryptogr. 86, 2315–2344 (2018).
Bartoli D., Giulietti M., Kawakita M., Montanucci M.: New examples of maximal curves with low genus. Finite Fields Appl. 68, 101744 (2020).
Beelen P., Montanucci M.: A new family of maximal curves. J. Lond. Math. Soc. 2(98), 573–592 (2018).
Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).
Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997).
Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).
Chen H.: Some good quantum error-correcting codes from algebraic geometry codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001).
Feng K., Ma Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004).
Galindo C., Hernando F.: Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr. 76, 89–100 (2015).
Garcia A., Tafazolian S.: Certain maximal curves and Cartier operators. Acta Arith. 235(3), 199–218 (2008).
Garcia A., Güneri C., Stichtenoth H.: A generalization of the Giulietti–Korchmáros maximal curve. Adv. Geom. 10(3), 427–434 (2010).
Giulietti M., Korchmáros G.: A new family of maximal curves over a finite field. Math. Ann. 343(1), 229–245 (2009).
Goppa V.D.: Algebraic-geometric codes. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 762–781 (1982). (in Russian).
Gottesman D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996).
Grassl M., Rötteler M., Beth T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003).
Grassl M., Rötteler M.: Quantum MDS codes over small fields. In: IEEE International Symposium on Information Theory—Proceedings, pp. 1104–1108 (2015).
Grover L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 212–219. ACM, New York (1996).
Hernando F., McGuire G., Monserrat F., Moyano-Fernández J.J.: Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Inf. Process. 19, 117 (2020).
Hirschfeld J.W.P., Korchmáros G., Torres F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008).
Høholdt T., van Lint J., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).
Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006).
Klappenecker A., Sarvepalli P.K.: Nonbinary quantum codes from Hermitian curves. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 136–143. Lecture Notes in Computer Science, vol. 3857, Springer, Berlin (2006).
Jin L.: Quantum stabilizer codes from maximal curves. IEEE Trans. Inf. Theory 60, 313–316 (2014).
Jin L., Xing C.P.: Euclidean and Hermitian self-orthogonal Algebraic Geometry codes and their application to Quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012).
Kim J., Mathews G.L.: Quantum error-correcting codes from algebraic curves. In: Martinez E., Munuera C., Ruano D. (eds.) Adv. Algebraic Geom. Codes, pp. 419–444. World Scientific, Hackensack (2008).
Kim J., Walker J.: Nonbinary quantum error-correcting cods from algebraic curves. Discret. Math. 308, 3115–3124 (2008).
La Guardia G.G., Pereira F.R.F.: Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf. Process. 16(6), 165 (2017). https://doi.org/10.1007/s11128-017-1618-7.
Montanucci M., Pallozzi Lavorante V.: AG codes from the second generalization of the GK maximal curve. Discret. Math. 343(5), 101810 (2020).
Montanucci M., Speziali P.: The \(a\)-numbers of Fermat and Hurwitz curves. J. Pure Appl. Algebra 222(2), 477–488 (2018).
Montanucci M., Timpanella M., Zini G.: AG codes and AG quantum codes from cyclic extensions of the Suzuki and the Ree curves. J. Geom. 109, 23 (2018). https://doi.org/10.1007/s00022-018-0428-0.
Munuera C., Sepúlveda A., Torres F.: Castle curves and codes. Adv. Math. Commun. 3, 399–408 (2009).
Munuera C., Tenório W., Torres F.: Quantum error-correcting codes from algebraic geometry codes of Castle Type. Quantum Inf. Process. 15, 4071–4088 (2016).
Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).
Ouyang Y.: Permutation-invariant quantum codes. Phys. Rev. A 90(6), 062317 (2014).
Ouyang Y.: Concatenated quantum codes can attain the quantum Gilbert–Varshamov bound. IEEE Trans. Inf. Theory 60(6), 3117–3122 (2014).
Ouyang Y.: Permutation-invariant qudit codes from polynomials. Linear Algebra Appl. 532, 43–59 (2017).
Ouyang Y., Chao R.: Permutation-invariant constant-excitation quantum codes for amplitude damping. IEEE Trans. Inf. Theory 66(5), 2921–2933 (2020).
Pellikaan R., Shen B.Z., van Wee G.J.M.: Which linear codes are Algebraic-Geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991).
Ruskai M.B.: Pauli Exchange Errors in Quantum Computation. Phys. Rev. Lett. 85(1), 194–197 (2000).
Shaska T.: Quantum codes from algebraic curves with automorphisms. Condens. Matter Phys. 11, 383–396 (2008).
Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM), pp. 124–134. IEEE Comput. Soc. Press, Los Alamitos (1994).
Shor P.W., Smith G., Smolin J.A., Zeng B.: High performance single-error-correcting quantum codes for amplitude damping. IEEE Trans. Inf. Theory 57(10), 7180–7188 (2011).
Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996).
Stichtenoth H.: Self-dual Goppa codes. J. Pure Appl. Algebra 55, 199–211 (1988).
Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009).
Tsfasman M.A., Vlăduţ S.G., Zink T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982).
Acknowledgements
The research of D. Bartoli and G. Zini was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). G. Zini is funded by the project “Attrazione e Mobilità dei Ricercatori” Italian PON Programme (PON-AIM 2018 num. AIM1878214-2) and by the project “VALERE: VAnviteLli pEr la RicErca” of the University of Campania “Luigi Vanvitelli”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Korchmaros.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bartoli, D., Montanucci, M. & Zini, G. On certain self-orthogonal AG codes with applications to Quantum error-correcting codes. Des. Codes Cryptogr. 89, 1221–1239 (2021). https://doi.org/10.1007/s10623-021-00870-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-021-00870-y