Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On ideal homomorphic secret sharing schemes and their decomposition

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In 1992, Frankel and Desmedt introduced a technique that enables one to reduce the secret space of an ideal homomorphic secret sharing scheme (IHSSS) into any of its characteristic subgroups. In this paper, we propose a similar technique to reduce the secret space of IHSSSs called the quotient technique. By using the quotient technique, we show that it is possible to yield an ideal linear scheme from an IHSSS for the same access structure, providing an alternative proof of a recent result by Jafari and Khazaei. Moreover, we introduce the concept of decomposition of secret sharing schemes. We give a decomposition for IHSSSs, and as an application, we present a necessary and sufficient condition for an IHSSS to be mixed-linear. Continuing this line of research, we explore the decomposability of some other scheme classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our definition of linear schemes corresponds to what is usually called multi-linear in the literature.

References

  1. Beimel A., Chor B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994).

    Article  MathSciNet  Google Scholar 

  2. Beimel A., Ishai Y.: On the power of nonlinear secret-sharing. In: Proceedings 16th annual IEEE conference on computational complexity, pp. 188–202. IEEE (2001)

  3. Beimel A., Livne N.: On matroids and nonideal secret sharing. IEEE Trans. Inf. Theory 54(6), 2626–2643 (2008).

    Article  MathSciNet  Google Scholar 

  4. Beimel A., Ben-Efraim A., Padró Carles T.I.: Multi-linear Secret-Sharing Schemes, pp. 394–418. Springer, New York (2014).

    MATH  Google Scholar 

  5. Benaloh J.C.: Secret sharing homomorphisms: Keeping shares of a secret secret. In: Conference on the theory and application of cryptographic techniques. Springer, New York pp. 251–260 (1986)

  6. Blakley G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 1979(48), 313–317 (1979).

    Google Scholar 

  7. Blundo C., De. Santis A., Vaccaro U.: On secret sharing schemes. Inf. Process. Lett. 65(1), 25–32 (1998).

    Article  MathSciNet  Google Scholar 

  8. Brickell E.F., Davenport D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4(2), 123–134 (1991).

    Article  Google Scholar 

  9. Chan T.H.: Group characterizable entropy functions. In: 2007 IEEE International Symposium on Information Theory, IEEE, pp. 506–510 (2007)

  10. Chan T.H., Yeung R.W.: On a relation between information inequalities and group theory. IEEE Trans. Inf. Theory 48(7), 1992–1995 (2002).

    Article  MathSciNet  Google Scholar 

  11. Chan T.H., Grant A., Britz T.: Quasi-uniform codes and their applications. IEEE Trans. Inf. Theory 59(12), 7915–7926 (2013).

    Article  MathSciNet  Google Scholar 

  12. Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs. Discrete Mathematics and its Applications. CRC Press, Baco Raton (2007).

    Google Scholar 

  13. Cramer R., Fehr S.: Optimal black-box secret sharing over arbitrary abelian groups. In: Annual international cryptology conference. Springer, pp. 272–287 (2002).

  14. Desmedt Y.G., Frankel Y.: Homomorphic zero-knowledge threshold schemes over any finite Abelian group. SIAM J Discret. Math. 7(4), 667–679 (1994).

    Article  MathSciNet  Google Scholar 

  15. Farràs O., Hansen T.B., Kaced T., Padró C.: On the information ratio of non-perfect secret sharing schemes. Algorithmica 79, 1–27 (2016).

    MathSciNet  MATH  Google Scholar 

  16. Frankel Y., Desmedt Y.: Classification of ideal homomorphic threshold schemes over finite abelian groups (extended abstract). In: EUROCRYPT (1992)

  17. Frankel Y., Desmedt Y., Burmester M.: Non-existence of homomorphic general sharing schemes for some key spaces (extended abstract). In: CRYPTO (1992)

  18. Gharahi M., Khazaei S.: Optimal linear secret sharing schemes for graph access structures on six participants. Theoret. Comput. Sci. 771, 1–8 (2019).

    Article  MathSciNet  Google Scholar 

  19. Isaacs I.M.: Finite Group Theory, vol. 92. American Mathematical Society, Washington (2008).

    MATH  Google Scholar 

  20. Ito M., Saito A., Nishizeki T.: Secret sharing scheme realizing general access structure. Electron. Commun. Jpn. 72(9), 56–64 (1989).

    Article  MathSciNet  Google Scholar 

  21. Jafari A., Khazaei S.: On abelian and homomorphic secret sharing schemes. Cryptology ePrint Archive, Report 2019/575. J. Cryptol. https://eprint.iacr.org/2019/575 (2019)

  22. Jafari A., Khazaei S.: Partial secret sharing schemes. IACR Cryptol. 2020, 448 (2020).

    Google Scholar 

  23. Kaboli R., Khazaei S., Parviz M.: On group-characterizability of homomorphic secret sharing schemes. Technical report, Cryptology ePrint Archive, Report 2019/576 (2019)

  24. Kaboli R., Khazaei S., Parviz M.: On ideal and weakly-ideal access structures. IACR Cryptol. 2020, 483 (2020).

    Google Scholar 

  25. Karnin E., Greene J., Hellman M.: On secret sharing systems. IEEE Trans. Inf. Theory 29(1), 35–41 (1983).

    Article  MathSciNet  Google Scholar 

  26. Keedwell A.D., Dénes J.: Latin Squares and Their Applications. Elsevier, Amsterdam (2015).

    MATH  Google Scholar 

  27. Liu M., Zhou Z.: Ideal homomorphic secret sharing schemes over cyclic groups. Sci. China Ser. E 41(6), 650–660 (1998).

    Article  MathSciNet  Google Scholar 

  28. Matúš F.: Matroid representations by partitions. Discret. Math. 203(1), 169–194 (1999).

    Article  MathSciNet  Google Scholar 

  29. Miller G.A.: The \(\varphi \)-subgroup of a group. Trans. Am. Math. Soc. 16(1), 20–26 (1915).

    Google Scholar 

  30. Oxley J.G.: Matroid Theory, Second Oxford University Press, Oxford (2011).

    Book  Google Scholar 

  31. Rose H.E.: A Course on Finite Groups. Springer, New York (2009).

    Book  Google Scholar 

  32. Seymour P.D.: On secret-sharing matroids. J. Comb. Theory Ser. B 56(1), 69–73 (1992).

    Article  MathSciNet  Google Scholar 

  33. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).

    Article  MathSciNet  Google Scholar 

  34. Simonis J., Ashikhmin A.: Almost affine codes. Des. Codes Crypt. 14(2), 179–197 (1998).

    Article  MathSciNet  Google Scholar 

  35. Stinson D.R.: Decomposition constructions for secret-sharing schemes. IEEE Trans. Inf. Theory 40(1), 118–125 (1994).

    Article  MathSciNet  Google Scholar 

  36. Sun H.-M., Chen B.-L.: Weighted decomposition construction for perfect secret sharing schemes. Comput. Math. Appl. 43(6–7), 877–887 (2002).

    Article  MathSciNet  Google Scholar 

  37. Van Dijk M., Jackson W.-A., Martin K.M.: A general decomposition construction for incomplete secret sharing schemes. Des. Codes Crypt. 15(3), 301–321 (1998).

    Article  MathSciNet  Google Scholar 

  38. van Dijk M., Kevenaar T., Schrijen G.-J., Tuyls P.: Improved constructions of secret sharing schemes by applying (\(\lambda \), \(\omega \))-decompositions. Inf. Process. Lett. 99(4), 154–157 (2006).

    Article  MathSciNet  Google Scholar 

  39. Zhou Z.: Classification of universally ideal homomorphic secret sharing schemes and ideal black-box secret sharing schemes. In: International conference on information security and cryptology. Springer, pp. 370–383 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Khazaei.

Additional information

Communicated by C. Padro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 2.2

Let \({\mathbf {S}}= ({\mathbf {S}}_i)_{i \in Q}\) be an ideal SSS with uniform distribution on its support. Since all marginal distributions are uniform on their supports too, it holds that \(\mathrm {H}({\mathbf {S}}_A)/\mathrm {H}({\mathbf {S}}_0) = \log |{\mathcal {S}}_A|/\log |{\mathcal {S}}_0| = \log _{|{\mathcal {S}}_0|} |{\mathcal {S}}_A|\) for any \(A \subseteq Q\). Therefore, Brickell and Davenport’s result implies that \(r: 2^Q \rightarrow {\mathbb {R}}\) defined by \(r(A) = \log _{|{\mathcal {S}}_0|} |{\mathcal {S}}_A|\) is the rank function of a matroid on the ground set Q.

Now, let \({\mathbf {S}}= ({\mathbf {S}}_i)_{i \in Q}\) be a SSS such that the function \(r: 2^Q \rightarrow {\mathbb {R}}\) defined by \(r(A) = \log _{|{\mathcal {S}}_0|} |{\mathcal {S}}_A|\) is the rank function of a matroid on the ground set Q. We claim that \({\mathbf {S}}\) is a perfect ideal scheme. Clearly, we have \(|{\mathcal {S}}_A| = |{\mathcal {S}}_0|^{r(A)}\) for \(A \subseteq Q\). Since r is the rank function of a matroid then it holds that \(r(\{i\}) \in \{0,1\}\) for any \(i \in P\). Since there is no redundant participant we have \(\mathrm {H}({\mathbf {S}}_i) > 0\) and hence \(|{\mathcal {S}}_i| > 1\). Therefore, \(r(\{i\}) \not = 0\) and we have \(r(\{i\}) = 1\) for any \(i \in P\). That means \(|{\mathcal {S}}_i| = |{\mathcal {S}}_0|\) for any \(i \in P\). Since the distribution of \({\mathbf {S}}\) is uniform on its support, it is straightforward to check that all marginal distributions are also uniform. Hence, for \(A \subseteq P\) we have

$$\begin{aligned} \mathrm {H}({\mathbf {S}}_0|{\mathbf {S}}_A)/\mathrm {H}({\mathbf {S}}_0)&= \mathrm {H}({\mathbf {S}}_{A\cup 0})/\mathrm {H}({\mathbf {S}}_0)-\mathrm {H}({\mathbf {S}}_A)/\mathrm {H}({\mathbf {S}}_0) \\&= \log |{\mathcal {S}}_{A\cup 0}|/\log |{\mathcal {S}}_{0}| - \log |{\mathcal {S}}_A|/\log |{\mathcal {S}}_{0}|\\&= \log _{|{\mathcal {S}}_{0}|} |{\mathcal {S}}_{A\cup 0}| - \log _{|{\mathcal {S}}_{0}|} |{\mathcal {S}}_A|\\&= r(A \cup 0) - r(A) \in \{0,1\} \end{aligned}$$

Therefore, \(\mathrm {H}({\mathbf {S}}_0|{\mathbf {S}}_A) \in \{0 , \mathrm {H}({\mathbf {S}}_0)\}\) and \({\mathbf {S}}\) is perfect.

Appendix B: Proof of Proposition 2.5

The direction that a scheme realizing \(\varGamma \) satisfies (\(\mathbf{a }\)) and (\(\mathbf{b }\)) is immediate. To see the reverse, let \({\mathbf {S}}= ({\mathbf {S}}_i)_{i \in Q}\) be a HSSS which satisfies the conditions in the proposition for the access structure \(\varGamma \). Clearly, the condition (\(\mathbf{a }\)) in the proposition implies that \(\mathrm {H}({\mathbf {S}}_0|{\mathbf {S}}_A) = 0\), for \(A \in \varGamma \). Now, let \(B \not \in \varGamma \). We show that \(\mathrm {H}({\mathbf {S}}_0|{\mathbf {S}}_B) = \mathrm {H}({\mathbf {S}}_0)\). Let \((s,b) \in {\mathcal {S}}_{0 \cup B}\) and k be the number of all distinct x’s that satisfy \((s,b,x) \in {\mathcal {S}}\). Let \(e_A = (e_i)_{i \in B}\) where \(e_i\) is the identity element of \({\mathcal {S}}_i\). Since \(B \not \in \varGamma \), for any \(s' \in {\mathcal {S}}_0\) we have \((s's^{-1},e_B) \in {\mathcal {S}}_{0 \cup B}\), according to the condition (\(\mathbf{b }\)) in the proposition. There exists \(y \in {\mathcal {S}}_{Q \setminus (0 \cup B)}\) such that \((s's^{-1},e_B,y) \in {\mathcal {S}}\). Since we have

$$\begin{aligned} (s',b,yx) = (s's^{-1},e_B,y)(s,b,x) \in {\mathcal {S}}, \end{aligned}$$

there exist at least k distinct elements z such that \((s',b,z) \in {\mathcal {S}}\). Since the distribution on \({\mathcal {S}}\) is uniform, we conclude that

$$\begin{aligned} \text {Pr}\left( {\mathbf {S}}_0=s,{\mathbf {S}}_B = b \right) \le \text {Pr}\left( {\mathbf {S}}_0=s',{\mathbf {S}}_B = b\right) . \end{aligned}$$

Similarly, we obtain \(\text {Pr}\left( {\mathbf {S}}_0=s',{\mathbf {S}}_B = b\right) \le \text {Pr}\left( {\mathbf {S}}_0=s,{\mathbf {S}}_B = b\right) \). Hence,

$$\begin{aligned} \text {Pr}\left( {\mathbf {S}}_0=s|{\mathbf {S}}_B = b \right) = \text {Pr}\left( {\mathbf {S}}_0=s'|{\mathbf {S}}_B = b \right) \end{aligned}$$

for all \(s \in {\mathcal {S}}_0\) and \(b \in {\mathcal {S}}_B\). Therefore, it holds that \(\mathrm {H}({\mathbf {S}}_0|{\mathbf {S}}_B) = \mathrm {H}({\mathbf {S}}_0)\).

Appendix C: Proof of Proposition 2.6

Let us first introduce some notation. Let \({\mathbf {S}}= ({\mathbf {S}}_i)_{i \in Q}\) be an IHSSS and \(B \cup \{i,k\}\) be a circuit for it. Let \(e_i\) be the identity element of \({\mathcal {S}}_i\) and for a subset \(A \subseteq Q\) let \(e_A = (e_i)_{i \in A}\). If for some \(x \in {\mathcal {S}}_k\) and \(y \in {\mathcal {S}}_i\) we have \((e_B,x,y) \in {\mathcal {S}}_{B \cup k \cup i}\), then we define \(f_{B,k,i}(x) = y\). If there is no confusion we drop B and i and simply write \(f_k (x) = y\).

We now return to the proof. It is easy to verify that \(f_k\) is an isomorphism between \({\mathcal {S}}_k\) and \({\mathcal {S}}_i\). Since we assumed that \({\mathcal {S}}_i = {\mathcal {S}}_0\) for every \(i \in P\) in IHSSSs, this mapping is an automorphism for \({\mathcal {S}}_0\). Since A is an independent set, for every \(k \in A\) we have \(\left( e_{A\setminus k} , a_k \right) \in {\mathcal {S}}_{(A \setminus k) \cup k} = {\mathcal {S}}_A\). By definition of \(f_k\), for \(k \in A\), we have \(\left( e_{A\setminus k} , a_{k}, f_{k} \left( a_k\right) \right) \in {\mathcal {S}}_{(A \setminus k) \cup k \cup i} = {\mathcal {S}}_{A \cup i}\). Therefore, (by an appropriate reordering of the coordinates) their product also belongs to \({\mathcal {S}}_{A \cup i}\); that is

$$\begin{aligned} \left( a, \prod _{k \in A}f_k\left( a_k\right) \right) = \left( (a_k)_{k \in A}, \prod _{k \in A}f_k\left( a_k\right) \right) \in {\mathcal {S}}_{A \cup i}. \end{aligned}$$

Since \(H\) is a characteristic subgroup of \({\mathcal {S}}_0\) and \(a_k \in H\), for every \(k \in A\), we have \(f_k\left( a_k\right) \in H\). Hence, \(\prod _{k \in A} f_k\left( a_k\right) \) belongs to \(H\) as well. Since the set \(A \cup i\) is a circuit, \(|{\mathcal {S}}_{A \cup i}| = |{\mathcal {S}}_A|\) and, hence, \(b = \prod _{k \in A} f_k\left( a_k\right) \). We conclude that \(b \in H\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, F., Kaboli, R., Khazaei, S. et al. On ideal homomorphic secret sharing schemes and their decomposition. Des. Codes Cryptogr. 89, 2079–2096 (2021). https://doi.org/10.1007/s10623-021-00901-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00901-8

Keywords

Mathematics Subject Classification