Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New PcN and APcN functions over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Functions with low c-differential uniformity were proposed in 2020 and attracted lots of attention, especially the PcN and APcN functions, due to their applications in cryptography. The objective of this paper is to study PcN and APcN functions. As a consequence, we propose two classes of PcN functions and three classes of APcN functions by using the cyclotomic technique and the switching method. In addition, four classes of PcN or APcN functions are presented by virtue of the (generalized) AGW criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary A., Ghioca B., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011).

    Article  MathSciNet  Google Scholar 

  2. Bartoli D., Timpanella M.: On a generalization of planar functions. J. Algebr. Comb. 52, 187–213 (2020).

    Article  MathSciNet  Google Scholar 

  3. Bartoli D., Calderini M.: On construction and (non)existence of \(c\)-(almost) perfect nonlinear functions. Finite Fields Appl. (2021). https://doi.org/10.1016/j.ffa.2021.101835.

    Article  MathSciNet  MATH  Google Scholar 

  4. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991).

    Article  MathSciNet  Google Scholar 

  5. Borisov N., Chew M., Johnson R., Wagner B.: Multiplicative Differentials. In: Daemen J., Rijmen V. (eds.) Fast Software Encryption. LNCS, vol. 2365. Springer, Berlin, Heidelberg (2002).

    Google Scholar 

  6. Budaghyan L., Helleseth T.: New perfect nonlinear multinomials over \({\mathbb{F}}_{p^{2k}}\) for any odd prime \(p\). In: Golomb S.W., Parker M.G., Pott A., Winterhof A. (eds.) Sequences and Their Applications. LNCS, vol. 5203. Springer, Berlin, Heidelberg (2008).

    Google Scholar 

  7. Coulter R., Matthews R.: Planar functions and planes of Lenz–Barlotti class II. Designs. Codes Cryptogr. 10(2), 167–184 (1997).

    Article  MathSciNet  Google Scholar 

  8. Coulter R., Henderson M., Hu L., Kosick P., Xiang Q., Zeng X.: Planar polynomials and commutative semifields two dimensional over their middle nucleus and four dimensional over their nucleus [Online]. Available: http://www.math.udel.edu/~coulter/papers/d24.pdf.

  9. Dembowski P., Ostrom T.: Planes of order \(n\) with collineation groups of order \(n^{2}\). Math. Z. 103(3), 239–258 (1968).

    Article  MathSciNet  Google Scholar 

  10. Ding C., Yuan J.: A family of skew Hadamard difference sets. J. Comb. Theory Ser. A 113(7), 1526–1535 (2006).

    Article  MathSciNet  Google Scholar 

  11. Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): A new case for \(n\) divisible by 5. In: Proceedings of the Finite Fields and Applications, pp. 113–121. Augsburg, Germany (1999).

  12. Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999).

    Article  MathSciNet  Google Scholar 

  13. Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Niho case. Inf. Comput. 151(1–2), 57–72 (1999).

    Article  MathSciNet  Google Scholar 

  14. Ellingsen P., Felke P., Riera C., Stănică P., Tkachenko A.: \(C\)-differentials, multiplicative uniformity and (almost) perfect \(c\)-nonlinearity. IEEE Trans. Inf. Theory 66(9), 5781–5789 (2020).

    Article  MathSciNet  Google Scholar 

  15. Hasan S., Pal M., Riera C., Stănică P.: On the \(c\)-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr. 89(2), 221–239 (2021).

    Article  MathSciNet  Google Scholar 

  16. Li N., Helleseth T., Tang X.: Further results on a class of permutation polynomials over finite fields. Finite Fields Appl. 22, 16–23 (2013).

    Article  MathSciNet  Google Scholar 

  17. Mesnager S., Qu L.: On two-to-one mappings over finite fields. IEEE Trans. Inf. Theory 65(12), 7884–7895 (2019).

    Article  MathSciNet  Google Scholar 

  18. Mesnager S., Riera C., Stănică P., Yan H., Zhou Z.: Investigations on \(c\)-(almost) perfect nonlinear functions. Early access in IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2021.3081348.

  19. Nyberg K.: Differnetially uniform mappings for cryptography. In: Helleseth T. (ed.) Proceedings of the EUROCRYPT 1993, vol. 765, pp. 55–64. LNCS. Springer, Heidelberg (1994).

  20. Stănică P.: Low \(c\)-differential and \(c\)-boomerang uniformity of the swapped inverse function. Discret. Math. 344(10), (2021).

  21. Stănică P., Geary A.: The \(c\)-differential behavior of the inverse function under the EA-equivalence. Cryptogr. Commun. 13(2), 295–306 (2021).

    Article  MathSciNet  Google Scholar 

  22. Stănică P., Riera C., Tkachenko A.: Characters, Weil sums and \(c\)-differential uniformity with an application to the perturbed Gold function. Cryptogr. Commun. https://doi.org/10.1007/s12095-021-00485-z.

  23. Tu Z., Zeng X., Jiang Y., Tang X.: A class of \({\rm {AP}}c{\rm {N}}\) power functions over finite fields of even characteristi. arXiv:2107.06464v1.

  24. Wang X., Zheng D.: Several classes of \({\rm {P}}c{\rm {N}}\) power functions over finite fields. arXiv:2104.12942v1.

  25. Yan H., Mesnager S., Zhou Z.: Power functions over finite fields with low \(c\)-differential uniformity. arXiv:2003.13019v3.

  26. Zha Z., Hu L.: Some classes of power functions with low \(c\)-differential uniformity over finite fields. Des. Codes Cryptogr. 89, 1193–1210 (2021).

    Article  MathSciNet  Google Scholar 

  27. Zha Z., Kyureghyan G.M., Wang X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15(2), 125–133 (2009).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding was provided by Application Foundation Frontier Project of Wuhan Science and Technology Bureau (Grant No. 2020010601012189) and National Natural Science Foundation of China (Grant Nos. 62072162 and 61761166010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Li.

Additional information

Communicated by G. Kyureghyan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, N. & Zeng, X. New PcN and APcN functions over finite fields. Des. Codes Cryptogr. 89, 2637–2651 (2021). https://doi.org/10.1007/s10623-021-00946-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00946-9

Keywords

Mathematics Subject Classification