Abstract
In this paper, we study the boomerang spectrum of the power mapping \(F(x)=x^{k(q-1)}\) over \({\mathbb {F}}_{q^2}\), where \(q=p^m\), p is a prime, m is a positive integer and \(\gcd (k,q+1)=1\). We first determine the differential spectrum of F(x) and show that F(x) is locally-APN. This extends a result of (IEEE Trans. Inf. Theory 57(12):8127-8137, 2011) from \((p,k)=(2,1)\) to general (p, k). We then determine the boomerang spectrum of F(x) by making use of its differential spectrum, which shows that the boomerang uniformity of F(x) is 4 if \(p=2\) and m is odd and otherwise it is 2. Our results not only generalize the results in Hasan et al. (Des Codes Cryptogr 89:2627–2636, 2021) and Yan et al. (Adv Math Commun 16(4):1111–1120, 2022) but also extend the example \(x^{45}\) over \({\mathbb F}_{2^8}\) in Hasan et al. (Des Codes Cryptogr 89:2627–2636, 2021) into an infinite class of power mappings with boomerang uniformity 2.
Similar content being viewed by others
Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
References
Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991).
Blondeau C., Perrin L.: More differentially \(6\)-uniform power functions. Des. Codes Cryptogr. 73(2), 487–505 (2014).
Blondeau C., Canteaut A., Charpin P.: Differential properties of power functions. Int. J. Inf. Coding Theory 1(2), 149–170 (2010).
Blondeau C., Canteaut A., Charpin P.: Differential properties of \({x\mapsto x^{2^{t}-1}}\). IEEE Trans. Inf. Theory 57(12), 8127–8137 (2011).
Boura C., Canteaut A.: On the boomerang uniformity of cryptographic S-boxes. IACR Trans. Symmetric Cryptol. 2018(3), 290–310 (2018).
Calderini M., Villa I.: On the boomerang uniformity of some permutation polynomials. Cryptogr. Commun. 12, 1161–1178 (2020).
Charpin P., Peng J.: Differential uniformity and the associated codes of cryptographic functions. Adv. Math. Commun. 13(4), 579–600 (2019).
Choi S.-T., Hong S., No J.-S., Chung H.: Differential spectrum of some power functions in odd prime characteristic. Finite Fields Appl. 21, 11–29 (2013).
Cid C., Huang T., Peyrin T., Sasaki Y., Song L.: Boomerang Connectivity Table: a new cryptanalysis tool. In: Nielsen J.B., Rijmen V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018).
Dobbertin H., Helleseth T., Kumar P.V., Martinsen H.: Ternary \(m\)-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type. IEEE Trans. Inf. Theory 47(4), 1473–1481 (2001).
Eddahmani S., Mesnager S.: Explicit values of the DDT, the BCT, the FBCT, and the FBDT of the inverse, the gold, and the Bracken–Leander S-boxes. Cryptogr. Commun. 14, 1301–1344 (2022).
Hasan S.U., Pal M., Stănică P.: Boomerang uniformity of a class of power maps. Des. Codes Cryptogr. 89, 2627–2636 (2021).
Hasan S.U., Pal M., Stănică P.: The binary Gold function and its c-boomerang connectivity table. Cryptogr. Commun. 14, 1257–1280 (2022).
Jiang S., Li K., Li Y., Qu L.: Differential and boomerang spectrums of some power permutations. Cryptogr. Commun. 14, 371–393 (2022).
Kim K.H., Mesnager S., Choe J.H., Lee D.N., Lee S., Jo M.C.: On permutation quadrinomials with boomerang uniformity \(4\) and the best-known nonlinearity. Des. Codes Cryptogr. 90, 1437–1461 (2022).
Lei L., Ren W., Fan C.: The differential spectrum of a class of power functions over finite fields. Adv. Math. Commun. 15(3), 525–537 (2021).
Li K., Qu L., Sun B., Li C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inf. Theory 65(11), 7542–7553 (2019).
Li N., Wu Y., Zeng X., Tang X.: On the differential spectrum of a class of power functions over finite fields. Preprint (2020). arXiv:2012.04316.
Li N., Xiong M., Zeng X.: On permutation quadrinomials and 4-uniform BCT. IEEE Trans. Inf. Theory 67(7), 4845–4855 (2021).
Li K., Li C., Helleseth T., Qu L.: Cryptographically strong permutations from the butterfly structure. Des. Codes Cryptogr. 89, 737–761 (2021).
Li N., Hu Z., Xiong M., Zeng X.: A note on “Cryptographically strong permutations from the butterfly structure’’. Des. Codes Cryptogr. 90, 265–276 (2022).
Lidl R., Niederreiter H.: Finite Fields, Encyclopedia of Mathematics, vol. 20. Cambridge University Press, Cambridge (1997).
Man Y., Xia Y., Li C., Helleseth T.: On the differential properties of the power mapping \(x^{p^m+2}\). Finite Fields Appl. 84, 102100 (2022).
Mesnager S., Tang C., Xiong M.: On the boomerang uniformity of quadratic permutations. Des. Codes Cryptogr. 88(10), 2233–2246 (2020).
Mesnager S., Mandal B., Msahli M.: Survey on recent trends towards generalized differential and boomerang uniformities. Cryptogr. Commun. 14, 691–735 (2022).
Nyberg K.: Differentially uniform mappings for cryptography. In: Helleseth T. (ed.) EUROCRYPT 1993, LNCS, vol. 765, pp. 134–144. Springer, Berlin (1994).
Pang T., Li N., Zeng X.: On the differential spectrum of a differentially 3-uniform power function, IACR Cryptol. ePrint Arch. 2022/610 (2022). https://eprint.iacr.org/2022/610.
Tang C., Ding C., Xiong M.: Codes, differentially \(\delta \)-uniform functions, and \(t\)-designs. IEEE Trans. Inf. Theory 66(6), 3691–3703 (2020).
Tu Z., Zeng X.: A class of permutation trinomials over finite fields of odd characteristic. Cryptogr. Commun. 11, 563–583 (2019).
Tu Z., Zeng X., Li C., Helleseth T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018).
Wagner D.: The boomerang attack. In: Knudsen L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Berlin (1999).
Xia Y., Zhang X., Li C., Helleseth T.: The differential spectrum of a ternary power mapping. Finite Fields Appl. 64, 101660 (2020).
Xiong M., Yan H.: A note on the differential spectrum of a differentially \(4\)-uniform power function. Finite Fields Appl. 48, 117–125 (2017).
Xiong M., Yan H., Yuan P.: On a conjecture of differentially \(8\)-uniform power functions. Des. Codes Cryptogr. 86(8), 1601–1621 (2018).
Yan H., Li C.: Differential spectra of a class of power permutations with characteristic 5. Des. Codes Cryptogr. 89, 1181–1191 (2021).
Yan H., Zhou Z., Wen J., Weng J., Helleseth T., Wang Q.: Differential spectrum of Kasami power permutations over odd characteristic finite fields. IEEE Trans. Inf. Theory 65(10), 6819–6826 (2019).
Yan H., Li Z., Song Z., Feng R.: Two classes of power mappings with boomerang uniformity 2. Adv. Math. Commun. 16(4), 1111–1120 (2022).
Yan H., Xia Y., Li C., Helleseth T., Xiong M., Luo J.: The differential spectrum of the power mapping \(x^{p^n-3}\). IEEE Trans. Inf. Theory 68(8), 5535–5547 (2022).
Yan H., Zhang Z., Li Z.: Boomerang spectrum of a class of power functions. In: 10th International Workshop on Signal Design and Its Applications in Communications (IWSDA), pp. 1–4 (2022).
Yan H., Zhang Z., Zhou Z.: A class of power mappings with low boomerang uniformity, accepted by WAIFI (2022).
Zha Z., Hu L.: The boomerang uniformity of power permutations \(x^{2^{k}-1}\) over \({\mathbb{F}}_{2^n}\). In: Ninth International Workshop on Signal Design and Its Applications in Communications (IWSDA), pp. 1–4 (2019).
Acknowledgements
This work was supported by the National Key Research and Development Program of China (No. 2021YFA1000600), the National Natural Science Foundation of China (Nos. 62072162, 12001176), the Natural Science Foundation of Hubei Province of China (No. 2021CFA079) and the Knowledge Innovation Program of Wuhan-Basic Research (No. 2022010801010319).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Communicated by P. Charpin.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, Z., Li, N., Xu, L. et al. The differential spectrum and boomerang spectrum of a class of locally-APN functions. Des. Codes Cryptogr. 91, 1695–1711 (2023). https://doi.org/10.1007/s10623-022-01161-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-022-01161-w