Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The differential spectrum and boomerang spectrum of a class of locally-APN functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we study the boomerang spectrum of the power mapping \(F(x)=x^{k(q-1)}\) over \({\mathbb {F}}_{q^2}\), where \(q=p^m\), p is a prime, m is a positive integer and \(\gcd (k,q+1)=1\). We first determine the differential spectrum of F(x) and show that F(x) is locally-APN. This extends a result of (IEEE Trans. Inf. Theory 57(12):8127-8137, 2011) from \((p,k)=(2,1)\) to general (pk). We then determine the boomerang spectrum of F(x) by making use of its differential spectrum, which shows that the boomerang uniformity of F(x) is 4 if \(p=2\) and m is odd and otherwise it is 2. Our results not only generalize the results in Hasan et al. (Des Codes Cryptogr 89:2627–2636, 2021) and Yan et al. (Adv Math Commun 16(4):1111–1120, 2022) but also extend the example \(x^{45}\) over \({\mathbb F}_{2^8}\) in Hasan et al. (Des Codes Cryptogr 89:2627–2636, 2021) into an infinite class of power mappings with boomerang uniformity 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Blondeau C., Perrin L.: More differentially \(6\)-uniform power functions. Des. Codes Cryptogr. 73(2), 487–505 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. Blondeau C., Canteaut A., Charpin P.: Differential properties of power functions. Int. J. Inf. Coding Theory 1(2), 149–170 (2010).

    MathSciNet  MATH  Google Scholar 

  4. Blondeau C., Canteaut A., Charpin P.: Differential properties of \({x\mapsto x^{2^{t}-1}}\). IEEE Trans. Inf. Theory 57(12), 8127–8137 (2011).

    Article  MATH  Google Scholar 

  5. Boura C., Canteaut A.: On the boomerang uniformity of cryptographic S-boxes. IACR Trans. Symmetric Cryptol. 2018(3), 290–310 (2018).

    Article  Google Scholar 

  6. Calderini M., Villa I.: On the boomerang uniformity of some permutation polynomials. Cryptogr. Commun. 12, 1161–1178 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. Charpin P., Peng J.: Differential uniformity and the associated codes of cryptographic functions. Adv. Math. Commun. 13(4), 579–600 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi S.-T., Hong S., No J.-S., Chung H.: Differential spectrum of some power functions in odd prime characteristic. Finite Fields Appl. 21, 11–29 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. Cid C., Huang T., Peyrin T., Sasaki Y., Song L.: Boomerang Connectivity Table: a new cryptanalysis tool. In: Nielsen J.B., Rijmen V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018).

  10. Dobbertin H., Helleseth T., Kumar P.V., Martinsen H.: Ternary \(m\)-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type. IEEE Trans. Inf. Theory 47(4), 1473–1481 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. Eddahmani S., Mesnager S.: Explicit values of the DDT, the BCT, the FBCT, and the FBDT of the inverse, the gold, and the Bracken–Leander S-boxes. Cryptogr. Commun. 14, 1301–1344 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasan S.U., Pal M., Stănică P.: Boomerang uniformity of a class of power maps. Des. Codes Cryptogr. 89, 2627–2636 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hasan S.U., Pal M., Stănică P.: The binary Gold function and its c-boomerang connectivity table. Cryptogr. Commun. 14, 1257–1280 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang S., Li K., Li Y., Qu L.: Differential and boomerang spectrums of some power permutations. Cryptogr. Commun. 14, 371–393 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim K.H., Mesnager S., Choe J.H., Lee D.N., Lee S., Jo M.C.: On permutation quadrinomials with boomerang uniformity \(4\) and the best-known nonlinearity. Des. Codes Cryptogr. 90, 1437–1461 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  16. Lei L., Ren W., Fan C.: The differential spectrum of a class of power functions over finite fields. Adv. Math. Commun. 15(3), 525–537 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. Li K., Qu L., Sun B., Li C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inf. Theory 65(11), 7542–7553 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. Li N., Wu Y., Zeng X., Tang X.: On the differential spectrum of a class of power functions over finite fields. Preprint (2020). arXiv:2012.04316.

  19. Li N., Xiong M., Zeng X.: On permutation quadrinomials and 4-uniform BCT. IEEE Trans. Inf. Theory 67(7), 4845–4855 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  20. Li K., Li C., Helleseth T., Qu L.: Cryptographically strong permutations from the butterfly structure. Des. Codes Cryptogr. 89, 737–761 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. Li N., Hu Z., Xiong M., Zeng X.: A note on “Cryptographically strong permutations from the butterfly structure’’. Des. Codes Cryptogr. 90, 265–276 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  22. Lidl R., Niederreiter H.: Finite Fields, Encyclopedia of Mathematics, vol. 20. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  23. Man Y., Xia Y., Li C., Helleseth T.: On the differential properties of the power mapping \(x^{p^m+2}\). Finite Fields Appl. 84, 102100 (2022).

    Article  MATH  Google Scholar 

  24. Mesnager S., Tang C., Xiong M.: On the boomerang uniformity of quadratic permutations. Des. Codes Cryptogr. 88(10), 2233–2246 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  25. Mesnager S., Mandal B., Msahli M.: Survey on recent trends towards generalized differential and boomerang uniformities. Cryptogr. Commun. 14, 691–735 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  26. Nyberg K.: Differentially uniform mappings for cryptography. In: Helleseth T. (ed.) EUROCRYPT 1993, LNCS, vol. 765, pp. 134–144. Springer, Berlin (1994).

  27. Pang T., Li N., Zeng X.: On the differential spectrum of a differentially 3-uniform power function, IACR Cryptol. ePrint Arch. 2022/610 (2022). https://eprint.iacr.org/2022/610.

  28. Tang C., Ding C., Xiong M.: Codes, differentially \(\delta \)-uniform functions, and \(t\)-designs. IEEE Trans. Inf. Theory 66(6), 3691–3703 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. Tu Z., Zeng X.: A class of permutation trinomials over finite fields of odd characteristic. Cryptogr. Commun. 11, 563–583 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  30. Tu Z., Zeng X., Li C., Helleseth T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  31. Wagner D.: The boomerang attack. In: Knudsen L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Berlin (1999).

  32. Xia Y., Zhang X., Li C., Helleseth T.: The differential spectrum of a ternary power mapping. Finite Fields Appl. 64, 101660 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiong M., Yan H.: A note on the differential spectrum of a differentially \(4\)-uniform power function. Finite Fields Appl. 48, 117–125 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiong M., Yan H., Yuan P.: On a conjecture of differentially \(8\)-uniform power functions. Des. Codes Cryptogr. 86(8), 1601–1621 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan H., Li C.: Differential spectra of a class of power permutations with characteristic 5. Des. Codes Cryptogr. 89, 1181–1191 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  36. Yan H., Zhou Z., Wen J., Weng J., Helleseth T., Wang Q.: Differential spectrum of Kasami power permutations over odd characteristic finite fields. IEEE Trans. Inf. Theory 65(10), 6819–6826 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  37. Yan H., Li Z., Song Z., Feng R.: Two classes of power mappings with boomerang uniformity 2. Adv. Math. Commun. 16(4), 1111–1120 (2022).

    Article  MathSciNet  Google Scholar 

  38. Yan H., Xia Y., Li C., Helleseth T., Xiong M., Luo J.: The differential spectrum of the power mapping \(x^{p^n-3}\). IEEE Trans. Inf. Theory 68(8), 5535–5547 (2022).

    Article  MATH  Google Scholar 

  39. Yan H., Zhang Z., Li Z.: Boomerang spectrum of a class of power functions. In: 10th International Workshop on Signal Design and Its Applications in Communications (IWSDA), pp. 1–4 (2022).

  40. Yan H., Zhang Z., Zhou Z.: A class of power mappings with low boomerang uniformity, accepted by WAIFI (2022).

  41. Zha Z., Hu L.: The boomerang uniformity of power permutations \(x^{2^{k}-1}\) over \({\mathbb{F}}_{2^n}\). In: Ninth International Workshop on Signal Design and Its Applications in Communications (IWSDA), pp. 1–4 (2019).

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1000600), the National Natural Science Foundation of China (Nos. 62072162, 12001176), the Natural Science Foundation of Hubei Province of China (No. 2021CFA079) and the Knowledge Innovation Program of Wuhan-Basic Research (No. 2022010801010319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by P. Charpin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Li, N., Xu, L. et al. The differential spectrum and boomerang spectrum of a class of locally-APN functions. Des. Codes Cryptogr. 91, 1695–1711 (2023). https://doi.org/10.1007/s10623-022-01161-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01161-w

Keywords

Mathematics Subject Classification