Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

BCH codes with larger dimensional hull

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Hulls of linear codes are widely studied due to their good properties and wide applications. Let \(n=\frac{q^m-1}{r}\) and \(\mathcal {C}\) be an [nk] cyclic code over \(\mathbb {F}_q\), where \(r|q-1\). In this paper, we present several necessary and sufficient conditions for BCH codes of length n that have \(k-1\) or \(k^\perp -1\) dimensional hulls, where \(k^\perp \) is the dimension of \(\mathcal {C}^\perp \). Further, we give the parameters of several families of self-orthogonal codes that arise as hulls of BCH codes. We obtain many optimal codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author, Binbin Pang, upon reasonable request.

References

  1. Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. Augot D., Sendrier N.: Idemordents and the BCH bound. IEEE Trans. Inf. Theory 40(1), 204–207 (1994).

    Article  MATH  Google Scholar 

  3. Augot D., Charpin P., Sendrier N.: Studying the locator polynomials of minimum weight codewords of BCH codes. IEEE Trans. Inf. Theory 38(3), 960–973 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. Berlekamp E.R.: The enumeration of information symbols in BCH codes. Bell Syst. Tech. J. 46(8), 1861–1880 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symbolic Comput. 24(3/4), 235–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlet C., Daif A., Danger J.-L., Guilley S., Najm Z., Ngo X.T., Porteboeuf T., Tavernier C.: Optimized linear complementary codes implementation for hardware trojan prevention, ECCTD, 1-4 (2015).

  7. Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. In: Pinto R., Malonek P.R., Vettotri P. (eds.) Coding theory and applications, pp. 97–105. Springer, Cham (2015).

    Chapter  Google Scholar 

  8. Carlet C., Mesnager S., Tang C.M., Qi Y.F.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 2605–2618 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. Charpin P.: Open problems on cyclic codes, Handbook of coding theory, pp. 963–1063. Elsevier, Amsterdam (1998).

    MATH  Google Scholar 

  10. Chen B.C., Liu H.W.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherchem A., Jamous A., Liu H., Maouche Y.: Some new results on dimension and Bose distance for various classes of BCH codes. Finite Fields Appl. 65, 101673 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding C.S.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding C.S., Du X.N., Zhou Z.C.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Du Z.R., Li C.J., Mesnager S.: Constructions of self-orthogonal codes from hulls of BCH codes and their parameters. IEEE Trans. Inf. Theory 66(11), 6774–6785 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. Gan C.Y., Li C.J., Mesnager S., Qian H.F.: On hulls of some primitive BCH codes and self-orthogonal codes. IEEE Trans. Inf. Theory 67(10), 6442–6455 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement assisted quanutm error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. Güneri C., Özkaya B., Solè P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang Y.W., Li C.J., Wang Q., Du Z.R.: Parameters and characterizations of hulls of some projective narrow-sense BCH codes. Des. Codes Cryptogr. 90, 87–106 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ireland K., Rosen M.: A classical introduction to modern number theory. Springer, New York (1982).

    Book  MATH  Google Scholar 

  20. Jin L.F.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).

    MathSciNet  MATH  Google Scholar 

  21. Jin L.F., Xing C.P.: Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert–Varshamov Bound. IEEE Trans. Inf. Theory 64(9), 6277–6282 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. Leon J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 3, 496–511 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. Leon J.: Permutation group algorithms based on partition, I: Theory and algorithms. J. Symb. Comput. 12, 533–583 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. Li C.J., Ding C.S., Li S.X.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu H., Ding C.S., Li C.J.: Dimensions of three types of BCH codes over \(GF(q)\). Discret. Math. 340, 1910–1927 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo G.J., Cao X.W., Chen X.J.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  27. MacWilliams F.J., Sloane N.J.A.: The theory of error-correcting codes. North Holland, The Netherlands (1977).

    MATH  Google Scholar 

  28. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. Mesnager S., Tang C.M., Qi Y.F.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  30. Skersys G.: The average dimension of the hull of cyclic codes. Electron. Notes Discret. Math. 6, 230–239 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  31. Skersys G.: The average dimension of the hull of cyclic codes. Discret. Appl. Math. 128(1), 275–292 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou Z.C., Li X., Tang C.M., Ding C.S.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inf. Theory 65(1), 16–27 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu S.X., Sun Z.H., Kai X.S.: A class of narrow-sense BCH codes. IEEE Trans. Inf. Theory 65(8), 4699–4714 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities under Gran JZ2022HGQB021, the National Natural Science Foundation of China under Grant U21A20428 and 12171134. We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Pang.

Additional information

Communicated by V. A. Zinoviev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, B., Zhu, S., Yang, T. et al. BCH codes with larger dimensional hull. Des. Codes Cryptogr. 91, 3933–3951 (2023). https://doi.org/10.1007/s10623-023-01281-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01281-x

Keywords

Mathematics Subject Classification