Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decomposing self-dual bent functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Bent functions are Boolean functions in even number of variables that have maximal nonlinearity. They have flat Walsh–Hadamard spectrum and are of interest for their applications in algebra, coding theory and cryptography. A bent function is called self-dual if it coincides with its dual bent function. In current work we study the decomposition of the form \(\left( f_0,f_1,\ldots ,f_{2^k-1}\right) \) of the vector of values of a self-dual bent function, formed by the concatenation of \(2^k\) Boolean functions \(f_j\) in \(n-k\) variables. We treat the cases \(k=1,2\). Based on a spectral characterization, we introduce a notion of self-dual near-bent function in odd number of variables and prove that there exists a one-to-one correspondence between the notions of self-duality for even and odd number of variables. As a result the characterization for the decomposition \(\left( f_0,f_1\right) \) is obtained. For the decomposition \(f=\left( f_0,f_1,f_2,f_3\right) \) we prove that if sign vectors of subfunctions \(f_j\) are linearly dependent, then all these subfunctions are bent. We prove that for \({n\geqslant 6}\) the converse does not hold, that is the obtained condition is sufficient only. These results are also generalized for the case of an arbitrary bent function. Three new iterative constructions of self-dual bent functions are proposed. One of them allows to build a class of self-dual bent functions which cannot be decomposed into the concatenation of four bent functions. Based on the constructions a new iterative lower bound on the cardinality of the set of self-dual bent functions is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams C.M., Tavares S.E.: Generating bent sequences. Discret. Appl. Math. 39, 155–159 (1992).

    Article  MathSciNet  Google Scholar 

  2. Bapić A., Pasalic E., Zhang F., Hodžić S.: Constructing new superclasses of bent functions from known ones. Cryptogr. Commun. 14(6), 1229–1256 (2022).

    Article  MathSciNet  Google Scholar 

  3. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inform. Theory 49(8), 2004–2019 (2003).

    Article  MathSciNet  Google Scholar 

  4. Canteaut A., Carlet C., Charpin P., Fontaine C.: On cryptographic properties of the cosets of \(R(1, m)\). IEEE Trans. Inform. Theory 47(4), 1494–1513 (2001).

    Article  MathSciNet  Google Scholar 

  5. Carlet C.: Two new classes of bent functions. In: Advances in Cryptology—EUROCRYPT ’93, pp. 77–101 Part of the Lecture Notes in Computer Science book series (LNCS, volume 765) (1994).

  6. Carlet C.: Boolean Functions for Cryptography and Coding Theory (2020).

  7. Carlet C., Mesnager S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016).

    Article  MathSciNet  Google Scholar 

  8. Carlet C., Danielsen L.E., Parker M.G., Solé P.: Self-dual bent functions. Int. J. Inf. Coding Theory 1, 384–399 (2010).

    MathSciNet  Google Scholar 

  9. Climent J.-J., Garcia F.J., Requena V.: A construction of bent functions of \(n+2\) variables from a bent function of \(n\) variables and its cyclic shifts. Algebra 2014 (2014). Article ID 701298.

  10. Cusick T.W., Stănică P.: Cryptographic Boolean Functions and Applications, 2nd edn. (2017).

  11. Danielsen L.E., Parker M.G., Solé P.: The Rayleigh quotient of bent functions. In: Cryptography and Coding, pp. 418–432 Part of the Lecture Notes in Computer Science book series (LNCS, volume 5921) (2009).

  12. Dillon J.: A survey of bent functions, pp. 191–215 (1972).

  13. Dillon J.F.: Elementary Hadamard difference sets. PhD thesis, Univ. of Maryland (1974).

  14. Feulner T., Sok L., Solé P., Wassermann A.: Towards the classification of self-dual bent functions in eight variables. Des. Codes Cryptogr. 68(1), 395–406 (2013).

    Article  MathSciNet  Google Scholar 

  15. Givens C.R.: Some observations on eigenvectors of Hadamard matrices of order \(2^n\). Linear Algebra Appl. 56, 245–250 (1984).

    Article  MathSciNet  Google Scholar 

  16. Hodžić S., Pasalic E., Wei Y.: A general framework for secondary constructions of bent and plateaued functions. Des. Codes Cryptogr. 88(10), 2007–2035 (2020).

    Article  MathSciNet  Google Scholar 

  17. Hodžić S., Pasalic E., Zhang W.: Generic constructions of five-valued spectra Boolean functions. IEEE Trans. Inform. Theory 65(11), 7554–7565 (2019).

    Article  MathSciNet  Google Scholar 

  18. Hou X.-D.: Classification of self dual quadratic bent functions. Des. Codes Cryptogr. 63(2), 183–198 (2012).

    Article  MathSciNet  Google Scholar 

  19. Hyun J.Y., Lee H., Lee Y.: MacWilliams duality and Gleason-type theorem on self-dual bent functions. Des. Codes Cryptogr. 63(3), 295–304 (2012).

    Article  MathSciNet  Google Scholar 

  20. Kutsenko A.V.: The Hamming distance spectrum between self-dual Maiorana-McFarland bent functions. J. Appl. Ind. Math. 12(1), 112–125 (2018).

    Article  MathSciNet  Google Scholar 

  21. Kutsenko A.: Metrical properties of self-dual bent functions. Des. Codes Cryptogr. 88(1), 201–222 (2020).

    Article  MathSciNet  Google Scholar 

  22. Kutsenko A.: The group of automorphisms of the set of self-dual bent functions. Cryptogr. Commun. 12(5), 881–898 (2020).

    Article  MathSciNet  Google Scholar 

  23. Kutsenko A., Tokareva N.: Metrical properties of the set of bent functions in view of duality. Appl. Discret. Math. 49, 18–34 (2020).

    Article  MathSciNet  Google Scholar 

  24. Kuz’min A.S., Markov V.T., Nechaev A.A., Shishkin V.A., Shishkov A.B.: Bent and hyper-bent functions over a field of \(2^l\) elements. Probl. Inf. Transm. 44(1), 12–33 (2008).

    Article  MathSciNet  Google Scholar 

  25. Li Y., Kan H., Mesnager S., Peng J., Tan C.H., Zheng L.: Generic constructions of (Boolean and vectorial) bent functions and their consequences. IEEE Trans. Inform. Theory 68(4), 2735–2751 (2022).

    Article  MathSciNet  Google Scholar 

  26. Logachev O.A., Sal’nikov A.A., Yashchenko V.V.: Bent functions on a finite abelian group. Discret. Math. Appl. 7(6), 547–564 (1997).

    Article  MathSciNet  Google Scholar 

  27. Luo G., Cao X., Mesnager S.: Several new classes of self-dual bent functions derived from involutions. Cryptogr. Commun. 11(6), 1261–1273 (2019).

    Article  MathSciNet  Google Scholar 

  28. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes (1977).

  29. Mesnager S.: Bent Functions: Fundamentals and Results (2016).

  30. Mesnager S.: On semi-bent functions and related plateaued functions over the Galois field \(\mathbb{F} _{2^n}\), pp. 243–273 (2014).

  31. Mesnager S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inform. Theory 60(7), 4397–4407 (2014).

    Article  MathSciNet  Google Scholar 

  32. Pasalic E., Bapić A., Zhang F., Wei Y.: Explicit infinite families of bent functions outside the completed Maiorana-McFarland class. Des. Codes Cryptogr. 91(7), 2365–2393 (2023).

    Article  MathSciNet  Google Scholar 

  33. Preneel B., Van Leekwijck W., Van Linden L., Govaerts R., Vandewalle J.: Propagation characteristics of Boolean functions. In: Advances in Cryptology—EUROCRYPT ’90, pp. 161–173 (LNCS, volume 473) (1991).

  34. Rifá J., Zinoviev V.A.: On binary quadratic symmetric bent and almost bent functions. arXiv:1211.5257v3.

  35. Rothaus O.S.: On “bent’’ functions. J. Comb. Theory Ser. A. 20(3), 300–305 (1976).

    Article  Google Scholar 

  36. Shi M., Li Y., Cheng W., Crnković D., Krotov D., Solé P.: Self-dual bent sequences for complex Hadamard matrices. Des. Codes Cryptogr. 91(4), 1453–1474 (2023).

    Article  MathSciNet  Google Scholar 

  37. Shi M., Li Y., Cheng W., Crnković D., Krotov D., Solé P.: Self-dual Hadamard bent sequences. J. Syst. Sci. Complex 36(2), 894–908 (2023).

    Article  MathSciNet  Google Scholar 

  38. Su S., Guo X.: A further study on the construction methods of bent functions and self-dual bent functions based on Rothaus’s bent function. Des. Codes Cryptogr. 91(4), 1559–1580 (2023).

    Article  MathSciNet  Google Scholar 

  39. Tang C., Zhou Z., Qi Y., Zhang X., Fan C., Helleseth T.: Generic construction of bent functions and bent idempotents with any possible algebraic degrees. J. Pure Appl. Algebra 63(10), 6149–6157 (2017).

    MathSciNet  Google Scholar 

  40. Tokareva N.: On the number of bent functions from iterative constructions: lower bounds. Adv. Math. Commun. 5(4), 609–621 (2011).

    Article  MathSciNet  Google Scholar 

  41. Tokareva N.: Bent Functions: Results and Applications to Cryptography (2015).

  42. Wolfmann J.: Special bent and near-bent functions. Adv. Math. Commun. 8(1), 21–33 (2014).

    Article  MathSciNet  Google Scholar 

  43. Yarlagadda R., Hershey J.: A note on the eigenvectors of Hadamard matrices of order \(2^n\). Linear Algebra Appl. 45, 43–53 (1982).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Kutsenko.

Additional information

Communicated by G. Kyureghyan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsenko, A. Decomposing self-dual bent functions. Des. Codes Cryptogr. 92, 113–144 (2024). https://doi.org/10.1007/s10623-023-01298-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01298-2

Keywords

Mathematics Subject Classification