Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approaching functions: Cabri tools as instruments of semiotic mediation

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

Assuming that dynamic features of Dynamic Geometry Software may provide a basic representation of both variation and functional dependency, and taking the Vygotskian perspective of semiotic mediation, a teaching experiment was designed with the aim of introducing students to the idea of function. This paper focuses on the use of the Trace tool and its potentialities for constructing the meaning of function. In particular, starting from a dynamic approach aimed at grounding the meaning of function in the experience of covariation, the Trace tool can be used to introduce the twofold meaning of trajectory, at the same time global and pointwise, and leads students to grasp the notion of function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartolini Bussi, M. G. (1998). Verbal interaction in mathematics classroom: a Vygotskian analysis. In H. Steinbring, M. G. Bartolini Bussi & A. Sierpinska (Eds.), Language and communication in mathematics classroom (pp. 65–84). Reston, VA: NCTM.

    Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (in press). Semiotic mediation in the mathematics classroom. In L. English & al. (Eds), Handbook of International Research in Mathematics Education. LEA.

  • Bottazzini, U. (1990). Storia della matematica. Torino, Italy: UTET.

    Google Scholar 

  • Bourbaki, N. (1939). Théorie des ensembles (fascicule des résultats). Paris, France: Herman.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. CBMS Issues in Mathematics Education, 7, 114–162.

    Google Scholar 

  • Confrey, J., & Maloney, A. (1996). Function probe. Communications of the ACM archive, 39(8), 86–87. New York: ACM.

  • Dreyfus, T., & Eisenberg, T. (1983). The function concept in college students. Focus on the Learning Problems in Mathematics, 5, 119–132.

    Google Scholar 

  • Dubinsky, E., & Harel, G. (1992). The concept of function: Aspects of epistemology and pedagogy, Mathematical Association of America, Vol. 25. Washington DC: MAA.

    Google Scholar 

  • Euler, L. (1945). Introductio in analysin infinitorum 2nd part. In Opera Omnia: Birkhäuser, Series 1, Vol. 9 (Original title: Introductio in analysin Infinitorum Tomus secundus Theoriam Linearum curvarum. Lousannae, 1743).

  • Falcade, R. (2002). Cabri-géomètre outil de médiation sémiotique pour la notion de graphe de fonction. Petit x, 58, 47–81.

    Google Scholar 

  • Goldenberg, E. P., Lewis, P., & O’Keefe, J. (1992). Dynamic representation and the development of an understanding of functions. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 235–260). Washington DC: MAA.

    Google Scholar 

  • Hazzan, O., & Goldenberg, E. P. (1997). Student’s understanding of the notion of function. International Journal of Computers for Mathematical Learning, 1(3), 263–290.

    Article  Google Scholar 

  • Kieran, C., & Yerushalmy, M. (2004). Research on the role of technological environments in algebra learning and teaching. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra (pp. 99–154). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Jahn, A. P. (2002). “Locus” and “trace” in Cabri-géomètre: relationships between geometric and functional aspects in a study of transformations. Zentralblatt für Didaktik der Mathematik, 34(3), 78–84.

    Article  Google Scholar 

  • Laborde, C. (1999). Core geometrical knowledge for using the modelling power of Geometry with Cabri-geometry. Teaching Mathematics and its Applications, 18(4), 166–171.

    Article  Google Scholar 

  • Leinhardt, G., Zaslavky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64.

    Article  Google Scholar 

  • Malik, M. A. (1980). Historical and pedagogical aspects of the definition of function. International Journal of Mathematical Education in Science and Technology, 11(4), 489–492.

    Article  Google Scholar 

  • Mariotti, M. A. (2001). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257–281.

    Google Scholar 

  • Mariotti, M. A. (2002). Influence of technologies advances on students’ math learning. In L. English, M.G. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education (pp. 695–723). LEA.

  • Mariotti, M. A., & Bartolini Bussi, M. G. (1998). From drawing to construction: Teachers mediation within the Cabri environment. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd International Conference of PME, vol. 1 (pp. 180–95). Stellenbosch, South Africa: University of Stellenbosch.

    Google Scholar 

  • Mariotti, M. A., Laborde, C., & Falcade, R. (2003). Function and graph in a DGS environment. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PMENA, vol. 3 (pp. 237–244). University of Hawai’i, Honolulu, HI, USA: CRDG, College of Education.

    Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Radford, L. (2002). The seen, the spoken and the written: A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14–23.

    Google Scholar 

  • Schwartz, J., & Yerushalmy, M. (1992). Getting students to function in and with algebra. In E. Dubinsky & G. Harel (Eds.), The concept of function : Aspects of epistemology and pedagogy (pp. 261–289). Washington DC: MAA.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 3–22.

    Article  Google Scholar 

  • Sierpinska, A. (1992). On understanding the notion of function. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 25–58). Washington DC: MAA.

    Google Scholar 

  • Tall, D. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 3–21). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Tall, D. (1996). Function and calculus. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), International handbook of mathematics education, vol. 1 (pp. 289–325). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. CBMS Issues in Mathematics Education, 4, 21–44.

    Google Scholar 

  • Trigueros, M., & Ursini, S. (1999). Does the understanding of variable evolve through schooling? In O.Zaslavsky (Ed.), Proceedings of the 23rd International Conference of PME, vol. 4 (pp. 273–280). Haifa, Israel: Israel Institute of Technology.

    Google Scholar 

  • Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20, 356–366.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wertsch, J. V., & Addison Stone, C. (1985). The concept of internalization in Vygotsky’s account of the genesis of higher mental functions. In J. V. Wertsch (Ed.), Culture, communication and cognition: Vygotskian perspectives (pp. 162–166). New York: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the teachers, Brigitte Lacaze, at the High School “Pablo Neruda” in Grenoble, and Daniela Venturi, at the High School “Liceo Scientifico Michelangelo Buonarroti” in Forte dei Marmi, for their active contribution, and to the students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alessandra Mariotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcade, R., Laborde, C. & Mariotti, M.A. Approaching functions: Cabri tools as instruments of semiotic mediation. Educ Stud Math 66, 317–333 (2007). https://doi.org/10.1007/s10649-006-9072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-006-9072-y

Key words