Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The objective of this study is to examine the adsorption–desorption behavior of a magnetically active hybrid sorbent (MAHS) material, prepared by dispersing colloid-like hydrated iron oxide particles in the outer periphery of a macroporous ion-exchange resin (Amberlite XAD-2). The experimental results show that the new sorbent material can simultaneously remove arsenic (V) and a chlorinated organic compound (2,6-dichlorophenol [2,6-DCP]) from aqueous solutions at around neutral pH. The recovery of arsenic and 2,6-DCP from MAHS was conducted using a regenerant containing 50% (v/v) CH3OH + 3% (w/v) NaOH. In less than 10 bed volumes of regenerant, more than 90% of As(V) and 2,6-DCP were recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Benjamin, M. M., Sletten, R. S., Bailey, R. P., & Bennet, T. (1996). Sorption and filtration of metals using ironoxide coated sand. Water Research, 30(11), 2609–2620.

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., De Michelis, I., & Vegliò, F. (2006). Micellar enhanced ultrafiltration for arsenic(V) removal: Effect of main operating conditions and dynamic modelling. Environmental Science & Technology, 40(8), 2746–2752.

    Article  CAS  Google Scholar 

  • Chang, Y. Y., Song, K. H., & Yang, J. K. (2008). Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. Journal of Hazardous Materials, 150, 565–572.

    Article  CAS  Google Scholar 

  • Cheng, R. C., Liang, S., Wang, H. C., & Beuhler, M. D. (1994). Enhanced coagulation for arsenic removal. Journal of the American Water Works Association, 86(9), 79–90.

    CAS  Google Scholar 

  • Chwirka, J. D., Thomson, B. M., & Stomp, J. M. (2000). Removing arsenic from groundwater. Journal of the American Water Works Association, 92(3), 79–88.

    CAS  Google Scholar 

  • Cumbal, L. (2004). Polymer-supported hydrated Fe oxide (HFO) nanoparticles: Characterization and environmental applications. PhD Thesis. PA, Bethlehem: Lehigh University.

  • Cumbal, L., & SenGupta, A. K. (2005a). Preparation and characterization of magnetically active dual-zone sorbent. Industrial & Engineering Chemistry Research, 44, 600–605.

    Article  CAS  Google Scholar 

  • Cumbal, L., & SenGupta, A. K. (2005b). Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of donnan membrane effect. Environmental Science and Technology, 39, 6508–6515.

    Article  CAS  Google Scholar 

  • Cumbal, L., Greenleaf, J., Leun, D., & SenGupta, A. K. (2003). Polymer supported inorganic nanoparticles: Characterization and environmental applications. Reactive and Functional Polymers, 54, 167–180.

    Article  CAS  Google Scholar 

  • DeMarco, M. J., SenGupta, A. K., & Greenleaf, J. E. (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 37(1), 164–176.

    Article  CAS  Google Scholar 

  • Driehaus, M., Jekel, M., & Hildebrandt, U. (1998). Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology—Aqua, 47(1), 30–35.

    CAS  Google Scholar 

  • Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Greenleaf, J. E., Lin, J. C., & SenGupta, A. K. (2006). Two novel applications of ion exchange fibers: Arsenic removal and chemical-free softening of hard water. Environmental Progress, 25(4), 300–311.

    Article  CAS  Google Scholar 

  • Hering, J. G., & Elimelech, M. (1997). Arsenic removal by enhanced coagulation and membrane processes (pp. 167–188). American Water Works Association.

  • Hering, J., Chen, P.-Y., Wilkie, J. A., & Elimelech, M. (1997). Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, 123(8), 800–807.

    Article  CAS  Google Scholar 

  • Iqbal, J., Kim, H.-J., Yang, J.-S., Baek, K., & Yang, J.-W. (2007). Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere, 66(5), 970–976.

    Article  CAS  Google Scholar 

  • Kabay, N., Demircioglu, M., Ekinci, H., Yuksel, M., Saglam, M., & Streat, M. (1998). Extraction of Cd(II) and Cu(II) from phosphoric acid solutions by solvent-impregnated resins (SIR) containing cyanex 302. Reactive & Functional Polymers, 38, 219–226.

    Article  CAS  Google Scholar 

  • Kang, M., Kawasaki, M., Tamada, S., Kamei, T., & Magara, Y. (2000). Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination, 131(1–3), 293–298.

    Article  CAS  Google Scholar 

  • Kartinen, E. O., & Martin, C. J. (1995). An overview of arsenic removal processes. Desalination, 103, 79–88.

    Article  CAS  Google Scholar 

  • Ku, Y., & Lee, K.-C. (2000). Removal of phenols from aqueous solution by XAD-4 resin. Journal of Hazardous Materials, 80(1–3), 59–68.

    Article  CAS  Google Scholar 

  • Leun, D., & SenGupta, A. K. (2000). Preparation and characterization of magnetically active polymeric particles (MAPPs) for complex environmental separations. Environmental Science Technology, 34, 3276–3282.

    Article  CAS  Google Scholar 

  • McNeil, L. S., & Edwards, M. (1995). Soluble arsenic removal at water treatment plants. Journal of the American Water Works Association, 87(4), 105–113.

    Google Scholar 

  • Nikolaidis, N. P., Dobbs, G. M., & Lackovic, J. A. (2003). Arsenic removal by zero-valent iron: Field, laboratory and modeling studies. Water Research, 37(6), 1417–1425.

    Article  CAS  Google Scholar 

  • Sengupta, A. K. (1995). Ion exchange technology advances in pollution control. Lancaster, PA: Technomic Publishing Company.

    Google Scholar 

  • Sengupta, A. K. (2001). Environmental separation of heavy metals engineered processes (1st ed.). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Shen, Y. S. (1973). Study of arsenic removal from drinking water. Journal of the American Water Works Association, 65(8), 543.

    CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New York: Wiley-Interscience.

    Google Scholar 

  • US Environmental Protection Agency (EPA). (2006). Arsenic in drinking water. Available online at: http://www.epa.gov/safewater/arsenic.html. Retrieved 25 May 2006.

  • Vagliasandi, F. G. A., & Benjamin, M. M. (1998). Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors. Water Science and Technology, 38(6), 337–343.

    Article  Google Scholar 

  • Viraraghavan, T., Subramanian, K. S., & Aruldoss, J. A. (1999). Arsenic in drinking water-problems and solutions. Water Science and Technology, 40(2), 69–76.

    Article  CAS  Google Scholar 

  • Warshawsky, A. (1981). Extraction with solvent-impregnated resins. In J. A. Marinsky & Y. Marcus (Eds.), Ion exchange and solvent extraction (Vol. 8). New York: Marcel Dekker.

    Google Scholar 

  • Warshawsky, A., & Berkovitz, H. (1979). Hydroxyoxime solvent-impregnated resins for selective copper extraction. Transactions of the Institution of Mining and Metallurgy, 88, c36.

    Google Scholar 

  • Zouboulis, A. I., & Katsoyiannis, I. A. (2002). Arsenic removal using iron oxide loaded alginate beads. Industrial Engineering Chemistry Research 41, 6149–6155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support received from TÜBITAK (Turkey)–NSF (USA), Scientific Research Project Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulker Beker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beker, U., Cumbal, L., Duranoglu, D. et al. Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal. Environ Geochem Health 32, 291–296 (2010). https://doi.org/10.1007/s10653-010-9301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9301-2

Keywords