Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentration of chlorophyll a (chl a; as a proxy for phytoplankton biomass) provides an indication of the water quality and ecosystem health of lakes. An automated image processing method for Landsat images was used to derive chl a concentrations in 12 Rotorua lakes of North Island, New Zealand, with widely varying trophic status. Semi-analytical and empirical models were used to process 137 Landsat 7 Enhanced Thematic Mapper (ETM+) images using records from 1999 to 2013. Atmospheric correction used radiative transfer modelling, with atmospheric conditions prescribed with Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and AIRS data. The best-performing semi-analytical and empirical equations resulted in similar levels of variation explained (r 2 = 0.68 for both equations) and root-mean-square error (RMSE = 10.69 and 10.43 μg L−1, respectively) between observed and estimated chl a. However, the symbolic regression algorithm performed better for chl a concentrations <5 μg L−1. Our Landsat-based algorithms provide a valuable method for synoptic assessments of chl a across the 12 lakes in this region. They also provide a basis for assessing changes in chl a individual lakes through time. Our methods provide a basis for cost-effective hindcasting of lake trophic status at a regional scale, informing on spatial variability of chl a within and between lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allan, M. G., Hamilton, D. P., Hicks, B. J., & Brabyn, L. (2011). Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. International Journal of Remote Sensing, 32(7), 2037–2055.

    Article  Google Scholar 

  • Babin, M. (2003). Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 108(3211).

  • Babin, M., Therriault, J.-C., Legendre, L., & Condal, A. (1993). Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production. Limnology and Oceanography, 38, 154–177.

    Article  Google Scholar 

  • Babin, M., Cullen, J., & Roesler, C. (2005). New approaches and technologies for observing harmful algal blooms. Oceanography, 18, 210–227.

    Article  Google Scholar 

  • Blondeau-Patissier, D., Brando, V. E., Oubelkheir, K., Dekker, A. G., Clementson, L. A., & Daniel, P. (2009). Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia. Journal of Geophysical Research, 114(C05003).

  • Bricaud, A. (2004). Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. Journal of Geophysical Research, 109, C11010.

  • Bricaud, A., & Morel, A. (1981). Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Research. Part A. Oceanographic Reseach Papers, 28, 1375–1393.

    Article  Google Scholar 

  • Brivio, P. A., Giardino, C., & Zilioli, E. (1997). The satellite derived optical information for the comparative assessment of lacustrine water quality. Science of the Total Environment, 196, 229–245.

    Article  Google Scholar 

  • Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., & Pozdnyakov, D. V. (1995). Optical properties and remote sensing of inland and coastal waters (p. 362). Boca Raton: CRC Press.

    Google Scholar 

  • Burns, N., McIntosh, J., & Scholes, P. (2005). Strategies for managing the lakes of the Rotorua District, New Zealand. Lake and Reservoir Management, 21, 61–72.

    Article  CAS  Google Scholar 

  • Burns, N., McIntosh, J., & Scholes, P. (2009). Managing the lakes of the Rotorua District, New Zealand. Lake and Reservoir Management, 25, 284–296.

    Article  Google Scholar 

  • Chen, C., Wang, L., Ji, R., Budd, J. W., Schwab, D. J., Beletsky, D., Cotner, J. (2004). Impacts of suspended sediment on the ecosystem in Lake Michigan: a comparison between the 1998 and 1999 plume events. Journal of Geophysical Research, 109, C10S11

  • Davies-Colley, R. J., & Vant, W. N. (1987). Absorption of light by yellow substance in freshwater lakes. Limnology and Oceanography, 32, 416–425.

    Article  CAS  Google Scholar 

  • Dekker, A. G. (1993). Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Amsterdam: Free University.

    Google Scholar 

  • Dekker, A. G., & Peters, S. W. M. (1993). The use of the thematic mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821.

    Article  Google Scholar 

  • Dekker, A. G., Hoogenboom, H. J., Goddijn, L. M., & Malthus, T. J. M. (1997). Relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sensing Reviews, 15, 59–74.

    Article  Google Scholar 

  • Dekker, A. G., Peters, S. W. M., Vos, R., & Rijkeboer, M. (2001a). Remote sensing for inland water quality detection and monitoring. In A. van Dijk & M. G. Bos (Eds.), GIS and remote sensing techniques in land- and water management. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2001b). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268, 197–214.

    Article  CAS  Google Scholar 

  • Dekker, A. G., Brando, V. E., Anstee, J. M., Pinnel, N., Kutser, T., Hoogenboom, H. J., & Malthus, T. J. (2002a). Imaging spectrometry of water. In F. van der Meer & S. M. de Jong (Eds.), Imaging spectrometry: basic principles and prospective applications (pp. 307–359). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Dekker, A. G., Voss, R. J., & Peters, S. W. M. (2002b). Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data. International Journal of Remote Sensing, 23, 15–35.

    Article  Google Scholar 

  • Devred, E., Sathyendranath, S., Stuart, V., & Platt, T. (2011). A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sensing of Environment, 115, 2255–2266.

    Article  Google Scholar 

  • Dierssen, H. M. (2010). Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 107, 17073–17078.

    Article  CAS  Google Scholar 

  • Dubelaar, G. B., Visser, J. W., & Donze, M. (1987). Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles. Cytometry, 8, 405–412.

    Article  CAS  Google Scholar 

  • Giardino, C., Pepe, M., Brivio, P., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in sub-alpine lake using Landsat imagery. The Science of the Total Environment, 268, 19–29.

    Article  CAS  Google Scholar 

  • Gilerson, A., Zhou, J., Hlaing, S., Ioannou, I., Schalles, J., Gross, B., & Ahmed, S. (2007). Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition. Optics Express, 15, 702–15721.

    Article  Google Scholar 

  • Gitelson, A., Garbuzov, G., Szilagyi, F., Mittenzwey, K., Karnieli, A., & Kaiser, A. (1993). Quantitative remote sensing methods for real-time monitoring of inland waters quality. International Journal of Remote Sensing, 14, 1269–1295.

    Article  Google Scholar 

  • Gitelson, A. A., Yacobi, Y. Z., Karnieli, A., & Kress, N. (1996). Reflectance spectra of polluted marine waters in Haifa Bay, Southeastern Mediterranean: features and application for remote estimation of chlorophyll concentration. Israel Journal of Earth Sciences, 45, 127–136.

    CAS  Google Scholar 

  • Gitelson, A., Dallolmo, G., Moses, W., Rundquist, D., Barrow, T., Fisher, T., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment, 112(9), 3582–3593.

    Article  Google Scholar 

  • Gordon, H. R., & McCluney, W. R. (1975). Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics, 14, 413–416.

    Article  CAS  Google Scholar 

  • Gordon, H. R., Brown, J. W., Brown, O. B., Evans, R. H., & Smith, R. C. (1988). A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93(D9), 10909–10924.

    Article  Google Scholar 

  • Hamilton, D. P., O’Brien, K. R., Burford, M. A., Brookes, J. D., & McBride, C. G. (2010). Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences, 72, 295–307.

    Article  CAS  Google Scholar 

  • Hamilton, D., Carey, C., Arvola, L., Arzberger, P., Brewer, C., Cole, J., & Brookes, J. (2015). A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models. Inland Waters, 5, 49–56.

    Article  Google Scholar 

  • Han, L., & Jordan, K. J. (2005). Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM+ data. International Journal of Remote Sensing, 26, 5245–5254.

    Article  Google Scholar 

  • Hill, V. J., & Zimmerman, R. C. (2010). Estimates of primary production by remote sensing in the Arctic Ocean: assessment of accuracy with passive and active sensors. Deep-Sea Research Part I: Oceanographic Research Papers, 57, 1243–1254.

    Article  Google Scholar 

  • Hoellein, T. J., Bruesewitz, D. A., & Hamilton, D. P. (2012). Are geothermal streams important sites of nutrient uptake in an agricultural and urbanising landscape (Rotorua, New Zealand)? Freshwater Biology, 57(1), 116–128.

    Article  Google Scholar 

  • Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering & Remote Sensing, 72, 1179–1188.

    Article  Google Scholar 

  • Kallio, K., Koponen, S., & Pulliainen, J. (2003). Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll a distribution in two meso-eutrophic lakes. International Journal of Remote Sensing, 24, 3771–3790.

    Article  Google Scholar 

  • Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36, 4330–4340.

    Article  CAS  Google Scholar 

  • Koponen, S. (2006). Remote sensing of water quality for Finnish lakes and coastal areas. Ph.D Thesis, Helsinki University of Technology: Finland.

  • Kostadinov, T. S., Siegel, D. A., & Maritorena, S. (2010). Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences, 7, 4295–4340.

    Article  Google Scholar 

  • Kotchenova, S. Y., Vermote, E. F., Levy, R., & Lyapustin, A. (2008). Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Applied Optics, 47(13), 2215–2226.

    Article  Google Scholar 

  • Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4, 87–112.

    Article  Google Scholar 

  • Kuster, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography, 49, 2179–2189.

    Article  Google Scholar 

  • Kutser, T., Metsamaa, L., & Dekker, A. G. (2008). Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuarine, Coastal and Shelf Science, 78(4), 649–654.

    Article  Google Scholar 

  • Liley, J. B., & Forgan, B. W. (2009). Aerosol optical depth over Lauder, New Zealand. Geophysical Research Letters, 36(7), L07811.

    Article  Google Scholar 

  • Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota lakes. Photogrammetric Engineering and Remote Sensing, 49, 219–229.

    Google Scholar 

  • Matthews, M. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32, 6855–6899.

    Article  Google Scholar 

  • Matthews, M. W., & Bernard, S. (2013). Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa. Biogeosciences, 10(12), 8139–8157.

    Article  Google Scholar 

  • Mobley, C. D. (1994). Light and water: radiative transfer in natural waters. San Diego: Academic Press.

  • Moisan, J. R., Moisan, T. A. H., & Linkswiler, M. A. (2011). An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. Journal of Geophysical Research, 116, 1–16.

    Article  Google Scholar 

  • Morel, A. (1974). Optical properties of pure water and pure seawater. In N. G. Jerlov & E. Steemann Nielsen (Eds.), Optical aspects of oceanography (pp. 1–24). London: Academic.

    Google Scholar 

  • Oliver, R., & Ganf, G. (2000). Freshwater blooms. In M. P. B. W (Ed.), The ecology of cyanobacteria: their diversity in time and space. (p. 149–194). Netherlands: Kluwer Academic Publishers.

  • Oliver, R., Hamilton, D., Brookes, J., & Ganf, G. (2012). Physiology, blooms and prediction of planktonic Cyanobacteria. In B. A. W (Ed.), Ecology of cyanobacteria II. (p. 155–194). Netherlands: Springer.

  • Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112, 4086–4097.

    Article  Google Scholar 

  • Pahlevan, N., Garrett, A. J., Gerace, A. D., & Schott, J. R. (2012). Integrating Landsat-71 imagery with physics-based models for quantitative mapping of coastal waters near river discharges. Photogrammetric Engineering & Remote Sensing, 78, 1163–1174.

    Article  Google Scholar 

  • Paul, W. J., Hamilton, D. P., Ostrovsky, I., Miller, S. D., Zhang, A., & Muraoka, K. (2012). Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand. Hydrobiologia, 698, 133–146.

    Article  CAS  Google Scholar 

  • Pope, R.M., & Fry, E.S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating Cavity Measurements, 8710–8723.

  • Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., Chu, D. A., Martins, J. V., & Holben, B. N. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62, 947–973.

    Article  Google Scholar 

  • Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324, 81–85.

    Article  CAS  Google Scholar 

  • Stephens, S., Gibbs, M., Hawes, I., Bowman, E., & Oldman, J. (2004). Ohau Channel Groynes. NIWA Client Report: HAM2004-047. Prepared for Environment Bay of Plenty.

  • Stramska, M., & Stramski, D. (2005). Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean. Applied Optics, 44, 1735–1747.

    Article  Google Scholar 

  • Stramski, D., Boss, E., Bogucki, D., & Voss, K. J. (2004). The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography, 61, 27–56.

    Article  Google Scholar 

  • Vant, W. N., & Davies-Colley, R. J. (1986). Relative importance of clarity determinants in lakes Okaro and Rotorua. New Zealand Journal of Marine and Freshwater Research, 20, 355–363.

    Article  Google Scholar 

  • Volten, H., Haan, J. D., & Hovenier, J. (1998). Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnology and Oceanography, 46, 1180–1197.

    Article  Google Scholar 

  • Webster, I. T., & Hutchinson, P. A. (1994). Effect of wind on the distribution of phytoplankton cells in lakes revisited. Limnology and Oceanography, 39, 365–373.

    Article  Google Scholar 

  • Wood, S. A, Briggs, L. R., Sprosen, J., G., Ruck, J. G., Wear, R. G., Holland, P. T., & Bloxham,  M. (2006). Changes in concentrations of microcystins in rainbow trout, freshwater mussels, and cyanobacteria in Lakes Rotoiti and Rotoehu. Environmental Toxicology, 21(3), 205–222.

  • Yacobi, Y. Z., Gitelson, A., & Mayo, M. (1995). Remote sensing of chlorophyll in Lake Kinneret using high spectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research, 17, 2155–2173.

    Article  CAS  Google Scholar 

  • Zhang, Y., Yin, Y., Wang, M., & Liu, X. (2012). Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence. Optics Express, 20(11), 11882–11898.

    Article  Google Scholar 

  • Zhou, W., Wang, G., Sun, Z., Cao, W., Xu, Z., Hu, S., & Zhao, J. (2012). Variations in the optical scattering properties of phytoplankton cultures. Optics Express, 20(10), 11189–11206.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Bay of Plenty Regional Council (BOPRC) and the Ministry of Business, Innovation and Employment (contract UOWX0505). This work benefited from participation in the Global Lakes Ecological Observatory Network (GLEON). We thank Bay of Plenty Regional Council for providing the measured data for water quality variables, in particular Paul Scholes, Glenn Ellery and Gareth Evans. Dr Matt Pinkerton (National Institute of Water and Atmospheric Research, New Zealand) provided technical guidance. Dr Hirokazu Yamamoto (Advanced Industrial Science and Technology, Japan) gave valuable feedback on atmospheric correction calculations. Richard Lamont (UOW) compiled 6sv for Windows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew G. Allan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allan, M.G., Hamilton, D.P., Hicks, B. et al. Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environ Monit Assess 187, 364 (2015). https://doi.org/10.1007/s10661-015-4585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4585-4

Keywords