Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Konya, which is located within the Konya Closed Basin, is the most important agricultural production region in Turkey. The future of agriculture is threatened in this region due to the decline in groundwater levels and the intensive agricultural activities that require high water consumption and are not suitable to the climate conditions of the region. In addition to these parameters, the geological structure of Konya also poses various environmental problems such as land subsidence and sinkhole formation. This study aimed to investigate the causes of the land subsidence problem in Konya and its surroundings with the help of the interferometric synthetic aperture radar (InSAR) technique and auxiliary data, namely optic, Coordination of Information on the Environment (CORINE), and groundwater monitoring station data. In order to investigate the land subsidence in the study area, 58 Sentinel-1A images acquired between 2014 and 2018 were processed by using the small baseline subset (SBAS) technique. In addition, the time series derived from the SAR data was validated by a global navigation satellite system (GNSS) station located in the study area. The results revealed that severe land subsidence, some of which reached 75 mm/year, occurred in certain areas of the study area over a period of three and a half years. High consistency was found between the land subsidence and the groundwater level change observed in the region, with a cross-correlation of over 95%. Moreover, the temporal and spatial patterns of the cultivated area and urbanization, which are the main reasons for the consumption of groundwater in the region, were revealed using the optic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alshawaf, F., Hinz, S., Mayer, M., & Meyer, F. J. (2015). Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations. Journal of Geophysical Research: Atmospheres, 120(4), 1391-1403.

  • Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), 483–486.

    Article  Google Scholar 

  • Aslan, G., Cakir, Z., Lasserre, C., & Renard, F. (2019). Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sensing, 11(1), 85.

    Article  Google Scholar 

  • Awange, J. L. (2012). Environmental monitoring using GNSS: Global navigation satellite systems. Springer Science & Business Media.

  • Babaee, S., Mousavi, Z., Masoumi, Z., Malekshah, A. H., Roostaei, M., & Aflaki, M. (2020). Land subsidence from interferometric SAR and groundwater patterns in the Qazvin plain. Iran. International Journal of Remote Sensing, 41(12), 4780–4798.

    Article  Google Scholar 

  • Baer, G., Schattner, U., Wachs, D., Sandwell, D., Wdowinski, S., & Frydman, S. (2002). The lowest place on Earth is subsiding—An InSAR (interferometric synthetic aperture radar) perspective. Geological Society of America Bulletin, 114(1), 12–23.

    Article  Google Scholar 

  • Bawden, G. W., Thatcher, W., Stein, R. S., Hudnut, K. W., & Peltzer, G. (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412(6849), 812–815.

    Article  CAS  Google Scholar 

  • Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375–2383.

    Article  Google Scholar 

  • Calò, F., Notti, D., Galve, J. P., Abdikan, S., Görüm, T., Orhan, O., ... & Şanli, F. B. (2018). A multi-source data approach for the investigation of land subsidence in the Konya basin, Turkey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences42(3/W4).

  • Caló, F., Notti, D., Galve, J. P., Abdikan, S., Görüm, T., Pepe, A., & Balik Şanli, F. (2017). DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya Plain, Turkey. Remote Sensing, 9(1), 83.

    Article  Google Scholar 

  • Canaslan-Çomut, F. C. (2016). Detectıng of surface deformatıons on dıfferent ground characterıstıcs usıng advanced InSAR technıques, Doctoral dissertation, School of Natural and Applıed Scıence, Selcuk University, (in Turkish)

  • Castellazzi, P., Arroyo-Domínguez, N., Martel, R., Calderhead, A. I., Normand, J. C., Gárfias, J., & Rivera, A. (2016). Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International journal of applied earth observation and geoinformation, 47, 102–111.

    Article  Google Scholar 

  • Casu, F. (2009). The Small BAseline Subset technique: performance assessment and new developments for surface deformation analysis of very extended areas. University of Cagliari.

    Google Scholar 

  • Casu, F., Manzo, M., & Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(3–4), 195–210.

    Article  Google Scholar 

  • Chaussard, E., Amelung, F., Abidin, H., & Hong, S. H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote sensing of environment, 128, 150–161.

    Article  Google Scholar 

  • Chaussard, E., Wdowinski, S., Cabral-Cano, E., & Amelung, F. (2014). Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote sensing of environment, 140, 94–106.

    Article  Google Scholar 

  • Chen, G., Zhang, Y., Zeng, R., Yang, Z., Chen, X., Zhao, F., & Meng, X. (2018). Detection of land subsidence associated with land creation and rapid urbanization in the Chinese loess plateau using time series InSAR: A case study of Lanzhou new district. Remote Sensing, 10(2), 270.

    Article  Google Scholar 

  • Dong, S., Samsonov, S., Yin, H., Ye, S., & Cao, Y. (2014). Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environmental earth sciences, 72(3), 677–691.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8–20.

    Article  Google Scholar 

  • Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., ... & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142-1153.

  • Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486.

    Article  Google Scholar 

  • Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert California. Water Resources Research, 34(10), 2573–2585.

    Article  Google Scholar 

  • Gleick, P. H. (1993). Water in crisis. Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute, Oxford Univ. Press. 473p, 9.

  • Herring, T. A., King, R. W., & McClusky, S. C. (2010). Introduction to Gamit/Globk. Massachusetts Institute of Technology.

    Google Scholar 

  • Higgins, S. A., Overeem, I., Steckler, M. S., Syvitski, J. P., Seeber, L., & Akhter, S. H. (2014). InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh. Journal of Geophysical Research: Earth Surface, 119(8), 1768–1781.

    Google Scholar 

  • Hoffmann, J., Galloway, D. L., & Zebker, H. A. (2003). Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resources Research39(2).

  • Ilia, I., Loupasakis, C., & Tsangaratos, P. (2018). Land subsidence phenomena investigated by spatiotemporal analysis of groundwater resources, remote sensing techniques, and random forest method: The case of Western Thessaly Greece. Environmental monitoring and assessment, 190(11), 623.

    Article  Google Scholar 

  • Jiang, Z. Q., & Zhou, W. X. (2011). Multifractal detrending moving-average cross-correlation analysis. Physical Review E, 84(1), 016106.

    Article  Google Scholar 

  • Kim, J. W. (2013). Applications of synthetic aperture radar (SAR)/SAR interferometry (InSAR) for monitoring of wetland water level and land subsidence (Doctoral dissertation, The Ohio State University).

  • Konak, H., Nehbit, P. K., Karaöz, A., & Cerit, F. (2020). Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. International Journal of Engineering and Geosciences, 5(1), 49–59.

    Google Scholar 

  • Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., & Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1377–1386.

    Article  Google Scholar 

  • Liu, D., Shao, Y., Liu, Z., Riedel, B., Sowter, A., Niemeier, W., & Bian, Z. (2014). Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR. Remote Sensing, 6(2), 1476–1495.

    Article  Google Scholar 

  • Liu, Y., Zhao, C., Zhang, Q., Yang, C., & Zhang, J. (2018). Land subsidence in Taiyuan, China, monitored by InSAR technique with multisensor SAR datasets from 1992 to 2015. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1509–1519.

    Article  Google Scholar 

  • Motagh, M., Shamshiri, R., Haghighi, M. H., Wetzel, H. U., Akbari, B., Nahavandchi, H., & Arabi, S. (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering geology, 218, 134–151.

    Article  Google Scholar 

  • Orhan, O., Dadaser-Celik, F., & Ekercin, S. (2019). Investigating land surface temperature changes using Landsat-5 data and real-time infrared thermometer measurements at Konya Closed Basin in Turkey. International Journal of Engineering and Geosciences, 4(1), 16–27.https://doi.org/10.26833/ijeg.417151

    Article  Google Scholar 

  • Orhan, O., Kirtiloğlu, O., & Yakar, M. (2020a). Konya Kapalı Havzası Obruk Envanter Bilgi Sisteminin Oluşturulması. Geomatik, 5(2), 81-90, (in Turkish). https://doi.org/10.29128/geomatik.577167

  • Orhan, O. (2019). Determining potential sinkhole areas using remote sensing and geographic information systems. Doctoral dissertation, School of Natural and Applied Science, Selcuk University, (in Turkish)

  • Orhan, O., Oliver-Cabrera, T., Wdowinski, S., Yalvac, S., & Yakar, M. (2021). Land Subsidence and Its Relations with Sinkhole Activity in Karapınar Region, Turkey: A Multi-Sensor InSAR Time Series Study. Sensors, 21(3), 774.

  • Orhan, O., Yakar, M., & Ekercin, S. (2020b). An application on sinkhole susceptibility mapping by integrating remote sensing and geographic information systems. Arabian Journal of Geosciences, 13(17), 1–17.

    Article  Google Scholar 

  • Orhan, O., Yakar, M., & Kırtıloğlu, O. S. (2017). A web based service application for visual sinkhole inventory information system; case study of Konya Closed Basin. Selcuk University Journal of Engineering, Science & Technology, 5(1), 72–82.

    Google Scholar 

  • Osmanoğlu, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E., & Jiang, Y. (2011). Mexico City subsidence observed with persistent scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation, 13(1), 1–12.

    Article  Google Scholar 

  • Ozdemir, A. (2016). Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), 681–707.

    Article  CAS  Google Scholar 

  • Pepe, A., & Calò, F. (2017). A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Applied Sciences, 7(12), 1264.

  • Phien-Wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in Bangkok, Thailand. Engineering geology, 82(4), 187–201.

    Article  Google Scholar 

  • Qu, F., Zhang, Q., Lu, Z., Zhao, C., Yang, C., & Zhang, J. (2014). Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 155, 366–376.

    Article  Google Scholar 

  • Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos, Transactions American Geophysical Union, 92(28), 234–234.

    Article  Google Scholar 

  • Stramondo, S., Bozzano, F., Marra, F., Wegmuller, U., Cinti, F. R., Moro, M., & Saroli, M. (2008). Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sensing of Environment, 112(6), 3160–3172.

    Article  Google Scholar 

  • Tatar, O., Poyraz, F., Gürsoy, H., Cakir, Z., Ergintav, S., Akpınar, Z., & Polat, A. (2012). Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements. Tectonophysics, 518, 55–62.

    Article  Google Scholar 

  • Tiryakioğlu, I. (2015). Geodetic aspects of the 19 May 2011 Simav earthquake in Turkey. Geomatics, Natural Hazards and Risk, 6(1), 76–89.

    Article  Google Scholar 

  • Tusat, E., & Ozyuksel, F. (2018). Comparison of GPS satellite coordinates computed from broadcast and IGS final ephemerides. International Journal of Engineering and Geosciences, 3(1), 12–19.

    Article  Google Scholar 

  • Ustun, A., Tusat, E., & Yalvac, S. (2010). Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006–2009 by means of GNSS observations. Natural Hazards and Earth System Sciences, 10(6), 1151-1157.

  • Üstün, A., Tuşat, E., Yalvaç, S., Özkan, İ, Eren, Y., Özdemir, A., & Doğanalp, S. (2015). Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environmental earth sciences, 73(10), 6691–6703.

    Article  Google Scholar 

  • Wang, G. Q. (2013). Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico. Journal of geodetic science, 3(1), 22-31.

  • Yalvaç, S. (2020) Determining the Effects of the 2020 Elazığ-Sivrice/Turkey (Mw 6.7) Earthquake from the Surrounding CORS-TR GNSS Stations. Turkish Journal of Geosciences, 1(1), 15-20.

  • Yalvac, S. (2020). Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium-and high-grade deformation areas. Environmental Monitoring and Assessment, 192(2), 120.

    Article  Google Scholar 

  • Yan, Y., Doin, M.-P., Lopez-Quiroz, P., Tupin, F., Fruneau,B., Pinel, V., Trouv ́e, E. (2012). Mexico City subsidence measured by inSAR time series: Joint analysis using PS and SBAS approaches. IEEE Journal of Selected Topicsin Applied Earth Observations and Remote Sensing, 5(4),1312–1326.

  • Yang, J., Cao, G., Han, D., Yuan, H., Hu, Y., Shi, P., & Chen, Y. (2019). Deformation of the aquifer system under groundwater level fluctuations and its implication for land subsidence control in the Tianjin coastal region. Environmental monitoring and assessment, 191(3), 162.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European space agency (ESA) for providing the SAR images (Sentinel-1), the General Directorate for State Hydraulic Works for providing the groundwater level data, and the General Directorate of Mapping (GDM) for providing the GNSS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Orhan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, O. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environ Monit Assess 193, 174 (2021). https://doi.org/10.1007/s10661-021-08962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08962-x

Keywords